/ MU
Micro Technology Unlimited

CODOS OPERATING SYSTEM
USER'S MANUAL

Release 1.0

August, 1980

Micro Technology Unlimited
2806 Hillsborough Street
P.0. Box 12106
Raleigh, NC 27605

(919) 833-1458

DISK RELIABILITY - ITS REALLY UP TO YOU!

Floppy disks provide an excellent low-cost storage media for programs and
data, with very high reliability. When used with the high-quality K-1013
Controller and CODOS Software, the incidence of data read-write failures should be
virtually nil, provided a few simple handling precautions are observed. The way
floppy disks are handled and stored will materially affect their lifetime and
reliability. During the many months of development of the CODOS system, we did not
experience a single (hard) read error during hundreds of hours of use, following
the rules below:

1. Always keep the diskette in its protective envelope. Get in the habit of
removing a disk from the drive directly to the paper envelope. Dust particles look
like a boulder to a recorded bit!

2. Do not touch the exposed recording surface of the disk. Fingerprints are a
killer, too.

3. Do not bend the disk. It's called a flexible disk, but you may damage it if
you try to prove it!

4. Do not write on the disk directly with pen or pencil. Use only a soft-tip
marker, and write only in the label area, or you may damage the magnetic surface
upderneath.

5. Avoid exposure to harsh environments such as extreme heat or cold.

6. Keep the diskette away from strong magnetic fields.

What kind of disks should be used?

Any gquality soft-sectored 8 inch floppy disk may be used. We recommend Dysan
double density disks for maximum data integrity security. However, satisfactory
results can usually be obtained with single-density diskettes of good gquality, due
to the exceptionally high-quality data separator used in the MTU K-1013
double-density controller, and the automatic error recovery software buiit in to
CODOS.

INTRODUCTION TO CODOS

CODOS (Channel-Oriented Disk Operating System), formerly called APEX-65, is an
extremely powerful and versatile disk operating system for 6502-based
microcomputers using the M.T.U. K=1013 Floppy Disk Controller. C(CODOS provides
a single-user operating system with exceptional levels of performance and
reliability. The system is designed from the ground up for integration with the
M.T.U. Disk Controller and takes full advantages of its many engineering
achievements. An on-board Bootstrap PROM brings up CODOS in the onboard 8K
bytes of "system" RAM, and enables the write-protect to help prevent errant user
programs from inadvertently "crashing" the system.

CODOS provides true device-independent I-0 over logical "channels", as found in
many large mainframe computers. A program can output tc a printer, display, or
disk file with equal ease. Since I-0 channels can be assigned by a Monitor
Command, programs can access different devices or files without modifiecation. Disk
I-0 is completely transparent to applications programs, which do not need to
provide buffers, "File Control Blocks", or other artifaces in order to do disk I-O.
A disk file can be randomly accessed at any position in the file with one disk
access or less,

The CODOS Monitor provides 28 built-in commands with free-format input, which
can be easily extended to include many User-defined commands. English-language
error messages help pinpoint user errors. Commands may also be read from disk
files or other devices, and .a special disk file called STARTUP.J is read by
the system automatically during booting up, facilitating.system customizing and
turnkey applications.

Interfacing for user-written Assembly-language programs is provided in the
form of "Supervisor Call" Pseudo-instructions (SVCs), which simplify program
development and portability between different CODOS-based systems.

Several Utility programs are provided for copying files, making duplicate
copies of the operating system, testing disks, etc.

HARDWARE REQUIREMENTS:

This is the initial release of CODOS. Additional configurations and more
different disk types will be supported in forthcoming versions. The initial
release supports:

(1) AIM-65 computers with 1 or 2 8-inch double density disk drives and 16K
of additional RAM memory addressed at $0000.

(2) KIM-1 computer with 1 or 2 8-inch double density disks, a terminal device,
and 8K or more of additional memory at $2000.

Either single or double sided disks may be used; however, double sided-disks
will only be supported in the single-sided mode of operation in this release.

A software driver is included with CODOS for either system to allow an M.T.U.
K-1008 Visible Memory High-resolution graphics Board plus a TV Monitor and ASCII
keyboard to function as a terminal device.

This is a preliminary manual. We suggest you read the entire manual before
attempting to use the CODOS system, then follew the First-time power-up
instructions for your machine.

CODOS FIRST-TIME STARTUP PROCEDURE: AIM-65

THIS SECTION PERTAINS ONLY TO THE AIM-65 COMPUTER. IF YOU DO NOT HAVE AN AIM-65,
SKIP TO THE SECTION PERTAINING TO YOUR SYSTEM.

Follow the following steps carefully:

1. Before attempting to use CODOS, we strongly suggest you carefully read
the System Concepts section, chapter 3, and skim chapters 4, 5, and 6, which
describe the Commands and Utility programs available on your system. These
Commands and Utilities will be used during the first-time powerup procedure.

2. The purpose of the first-time power-up procedure is to copy the
distribution disk to another disk and "customize" the new operating system on
this disk to yourparticular machine needs. Once this is accomplished, you
can use the new disk to bring up your "custom" system automatically using the
bootstrap ROM. The objective of the first and most essential level of "System
Generation® is to establish the number of disks in your system and the type
of I-0 desired for your conscle device. Later, more customization can be performed
to "fine tune" the system and improve performance, as well as add support for
other devices.

3. Insure that you have an operational disk system as described in the
¥K-1013 hardware manual, with the on-board memory jumpered to the following
addresses: -

"SYSTEM RAM" at $8000.
"USER RAM" at $4000,

Additional RAM is recommended at $0000 through $3FFF, but not essential. An MTU
K-1016 16 K memory board can fill this need easily. If the MTU "Visible Memory"
is to be used, it should be addressed at $6000. A complete driver program for
using the visible memory as a conole output with the AIM-65 is provided on the
distribution disk.

L. Power up the AIM. Using the AIM Monitor, verify the existence of memory
at $4000 and $8000, If you get a "MEMORY FAIL" when depositing into the $8000
block of memory, it means that the Hardware write-protect is set. This can be
disabled by writing a 00 into $9FE8 (which will also give a "MEMORY FAIL" message,
that can be ignored). It is not necessary to disable the write-protect to bring
up the system; you are only doing it to make the initial check for correct board
addressing.

5. Insert the CODOS distribution disk in drive O (label towards the moveable
part of the door). Close the door.

6. Tum on the AIM printer.

.7. Using the AIM Monitor, begin execution at $9F00. This is the on-board
bootstrap ROM.

8. The disk should show immediate activity and after about two seconds the
"Sign-on" message should be printed:

M.T.U. CODOS V1.0
ENTER DATE (EXAMPLE:
O4-JUL-T6)?2=

. 9. Enter today's 9 character date in the indicated format and depress RETURN.
Every CODOS keyboard entry needs to be terminated by a RETURN.

10. The display should show the CODOS prompt character, ™ . This character
indicates that CODOS is ready to accept a Command. You are now ready to make
a backup copy of the Distribution disk. If you have a two-drive system, put a new
disk into drive 1. If you have a one-drive system, enter:

UNPROTECT
SET 880F=1

If you do not have a 16K memory at $0000, redefine the Large Buffer address as
described in chapter 9,

11. Type:
FORMAT

and then carefully follow the directions for the FORMAT Utility in chapter 6.
When the new disk is formatted and the System copied, use the FILES command
described in chapter 4 to ascertain which files were hot copied by FORMAT.

12. Use the COPYF (if you have 2 or more drives) or COPYF1DRIVE {if you have
only one drive) Utility programs deseribed in chapter 6 to copy all remaining files
from the distribution disk.

13, Remove the Distribution diskette from drive 0 and put it away in its
envelope in a safe place. You should not need it again. Use only copies of the
system for your normal activities.

14. Power off the AIM completely. Power back up the AIM, and insert the
newly-formatted disk in drive 0.

15. Execute the bootstrap loader as before using the AIM Monitor to begin
execution at $9F00. The system should come up exactly as with the Distribution
disk.

16. If you have a Visible Memory board at $6000, you will probably want to
type:

VMT

This loads and executes a special driver program which changes the Console device
for CODOS from the AIM keyboard and Display/Printer to the AIM keyboard and Visible
Memory CRT. The printer will still function normally and can be turned off using
CNTRL-PRINT in the ususal fashion. The display will display only garbage, however.
To restore the normal AIM display, type:

VMTOFF
which disables the Visible Memory Terminal driver program.

17. You may now enter any legal Commands, make additional backup copies,
or "customize" your system using the guidelines in chapter 9. If you have a

one-drive system, be sure to follow the directions in chapter 9 to make the
permanent disk copy of the system "know" you have only 1 drive.

CODOS FIRST-TIME-PQWER-UP PROCEDURE: KIM-1

THIS SECTION PERTAINS ONLY TO THE COMMODORE KIM-1 COMPUTER. IF YOU DO NOT
BAVE A KIM-1, SKIP TO THE SECTION PERTAINING TO YOUR COMPUTER.

Follow the following steps carefully:

1. Before attempting to use CODOS, we strongly suggest you carefully read
the System Concepts section, chapter 3, and skim chapters 4, 5, and 6, which
describe the Commands and Utility programs available on your system. These
Commands and Utilities will be used during the first-time powerup procedure.

2, The purpose of the first-time power-up procedure is to copy the
Distribution disk to another disk and "customize" the new operating system on
this disk to you particular machine needs. Once this is accomplished, you
can use the new disk to bring up your "custom" system automatically using the
bootstrap ROM. The objective of the first and most essential level of "System
Generation" is to establish the number of disks in your system and the type
of I-0 desired for your Console device. Later, more customization can be performed
to "fine tune" the system and improve performance, as well as add support for
other devices.

3. Insure that you have an operational disk system as described in the
K-1013 hardware manual, with the on-board memory jumpered to the following
addresses:

"SYSTEM RAM" at $C000.
"USER RAM" at $6000.

At least BK additional RAM, and preferably 16K, should be available startlng at
$2000. An MTU K-1016 16K RAM board can supply this need conveniently.

Unfortunately, there is very little standardization of memory layouts or I-0
devices on KIM based systems. MIU will make available several other configurations
of CODOS in the near future to support the most common configurations.

4., CODOS requires a Console device for input-output (a terminal), The KIM
keypad cannot be used for this purpose. Any type of terminal can be used, provided
it is capable of supplying ASCII characters and displaying them. The user must
provide the software driver routines for the terminal device. If you do not have a
terminal, a very low-cost versatile terminal can be made by using the MIU K-1008
"Visible Memory" with a Monitor to display output, and an ASCII keyboard with
parallel input. A complete driver program called the "Visible Memory Terminal"
(VMT) supporting both text and high-resolution graphics output is provdied on the
CODOS Distribution disk. If you wish to use it, the Visible Memory board should be
addressed at $A000.

5. If you do not wish to use the VMT Console, you must load the necessary
software drivers into memory using the KIM Monitor. These drivers can reside
in any part of memory not needed by CODOS (see memory map), and can be in PROM
or RAM. You will need a subroutine to input a character from the keyboard, and
a subroutine to output a character to your display device. The specific
requirements for the driver routines are given in Appendix E, together with a
sample driver.

6. Once you have your input-output Console drivers loaded, you will need to
communicate their location to CODOS, along with some other information. Using
the KIM Monitor, carefully deposit the necessary information in memory as shown
in Table 2-1.

23

TABLE 2-1: DEFINING KIM-1 SYSTEM TO CODOS

At Address... Deposit this information...
$0100 Number of disk drives in system, O or 1.
0101 Flag. Set to non-0 if you want to use VMT Visible Memory Terminal
(requires Visible Memory at $A000)
0102-0103 Address of your Keyboard Character-in driver subroutine.
0104-0105 Address of your Display Character«Out driver subroutine, if you
do not want to use the VMT driver provided.
0106-0107 Starting address of the Large Buffer Area used by file copying
Utility programs, etc. See description below.
0108-0109 End address of the Large Buffer Area.
NOTES:

1. All 2-byte quantities should be depositied in the conventional low-byte,
high-byte order.

2. The Large Buffer Area should be defined as an area of available RAM not in
the reserved memory area for CODOS nor overlapping your I-0 drivers, which CODOS
can use for temporary storage during copying operations by the utility programs.
It must not overlap the area into which the Utiltiy programs load ($2000 through
28FF) The Buffer should be as large as possible to increase efficiency, especially
ch a one=-drive system, since the size of the buffer determines the number of disk-
swaps needed to copy a file. This buffer is only used for scratch storage by the
FORMAT and file-copying Utility programs.

3. If you choose to use the VMT, it will be loaded into memory automatically
during booting-up. You will still need to provide the Keyboard Driver. ’

EXAMPLE:

A KIM system has 1 drive, 16K of RAM at $2000, and uses a CRT terminal for the
Console. The CRT Input-character routine is located at $1780 and the output
entry point is $1783. The VMT will not be used. Deposit memory as follows:

$0100 01
0101 00
0102 80
0103 17
0104 83
0105 17
0106 00
0107 29
0108 FF

0109 §F

2z~

7. When you you are certain your I-0 drivers are operational and the necessary
information is properly installed in zero-page, you may insert the distribution
disk into drive 0 (label side toward moveable part of door) and close the door.

8. Using the KIM Monitor, begin execution at address $BF00, which is the
Bootstrap PROM. The disk should show immediate signs of activity. After about
two seconds, your Console should display:

M.T.U. CODOS V1.0
ENTER DATE (EXAMPLE:O4-JUL-76)?=

If the disk shows activity but the message does not appear, check your device
drivers for the Console. If the disk does not show activity, check your board
addressing for the disk controller.

9. Enter today's 9 character date in the indicated format and depress RETURN.
Every CODOS keyboard entry needs to be terminated by a RETURN.

10. The display should show the CODOS prompt character, " ". This character
indicates that CODOS is ready to accept a Command. If the characters do not appear
on the console as you type them, check your keyboard driver. If you get double
characters, don't worry about it. You can fix this later as described in chapter
9, Assuming all is well, you are now ready to make a backup copy of the
Distribution disk. If you have a two-drive system, put a new disk into drive 1.

11. Type:
FORMAT

and then carefully follow the directions for the FORMAT Utility in chapter 6. If
the system "crashes" or behaves strangely after starting the copying of the
operating system, it is because your Large Buffer Addresses were wrong. When the
new disk is formatted and the System copied, use the FILES command described in
chapter 4 to ascertain which files were not copied by FORMAT.

12. Use the COPYF (if you have 2 drives) or COPYFIDRIVE (if you have only one
drive) Utility program described in chapter 6 to copy all remaining files from the
distribution disk,

13. Use the CLOSE command to close drives O and 1 if you have a two-drive
system, or drive 0 if you have a one-drive system, Remove the Distribution
disk and put it away in its envelope in a safe place. Work only with the copied
disk.

14, Put the new disk into drive 0 and OPEN it. Use the FILES command to
verify the existence of the system files.

15. Right now the address of your device drivers and the other information
is only temporarily patched into the CODOS system memory image. You will now
want to make it a permanent part of the disk copy of the memory image, S0 that
you can boot-up without any preamble. If your device-drivers are in RAM, you
will also want to have these loaded into memory for you from disk automatically
when you boot-up. To do this, follow the instructions in Chapter 9.

16. Once you have performed the necessary "System Generation", it will
only be necessary to insert the "customized" disk in drive 0 and begin
execution at $PFO0 to bring up the system.

CODOS SYSTEM CONCEPTS

The CODOS Operating System is a powerful computer program
for managing the resources of a 6502-based microcomputer. In
particular, it provides a convenient method for storing and
retrieving other programs and data on floppy disk storage.

The user will normally interact with CODOS principally through
two built-in facilities:

1. The SYSTEM MONITOR;
2. The SVC PROCESSOR.

The SYSTEM MONITOR provides a simple method for the user to
interact directly with CODOS by typing commands from the keyboard
(hereafter called the CONSOLE). These COMMANDS are most often
used to initiate execution of other programs, examine the status
of various system attributes (such as the names of files present
on floppy disk), or to alter the status of the system (for
example, adding a new program to floppy disk). The CODOS SYSTEM
MONITOR is initiated automatically when the system is "booted™"
up; a prompting message is issued on the console display, and the
system awaits user commands, These commands may be either
built-in commands, Utilities or user-defined commands. All three
types of commands are described in detail later.

A1l users of the CODOS system will utilize the functions
of the SYSTEM MONITOR to some degree. In addition, however,
programmers will also wish to utilize the facility which
permits programs to interact with the operating system. For
example, programmers will wish to be able to display messages
on the display and input characters from the keyboard. In
most conventional microcomputer systenms, support for this type
of activity is provided in a limited sense by making available
to the programmer a list of addresses of system subroutines
which perform the basic input-output functions essential to
programming; the programmer can use these functions by writing
a Call (JSR) to the appropriate system subroutine from within
the application program.

CODOS provides a different, higher-level method of support
for user-written programs called the SUPERVISOR CALL (SVC).
Although not found on microcomputers, SVC's are found extensively
on. the finest mainframe computers. Instead of a JSR instruction
to a system routine, the SVC consists of a BRK ($00) instruction
followed by a data byte which jdentifies the function desired.
There are several advantages to this method, which are described
later; the most important advantage of the SVC is that SVCs are
address-independent. This means that a program using SVCs will
run without modification regardless of the location of the
operating system. Thus, for example, a program written on an AIM
with CODOS at $8000 can be run without modification on a KIM
with CODOS at $E000., SVCs are discussed in detail in a later
section.

3-1

CHANNELS

CODOS provides a capability not normally found on micros
called device-independent I-0. Device-independence means that a
program (or SYSTEM MONITOR command) can perform input or output
to or from a variety of devices or disk files without modifica-
tion. For example, a program which normally displays its output
on the system console device can be re-run such that the output
is directed instead to a printer, without any modification to the
program. Input or output can also be re-directed to a file on
disk. This provides an exceptionally powerful capability. The
devices to be used can be selected by a simple MONITOR command,
or by an executing program itself.

The key to device-independence in CODOS is the use of
software 1-0 Channels. The SYSTEM MCNITOR and programs
communicate with the outside world over channels, At any
time, these channels may be associated with a given device or
file. The standard CODOS system has ten channels, numbered
0 through 9. Each of these channels may be used to send
or receive data, or both. For example, a printer is normally
an output-only device, but the system console (terminal) can
both send and receive data.

Certain channels have pre-defined meanings, and other
channels have been given suggested standard meanings in the
interest of uniformity among applications. These channel
definitions are given in Table 3-1.

The way in which channels are used will become clearer in
following sections which introduces the CODOS Monitor Commands.
The section on interfacing to user programs, chapter 7, describes
the use of channels from a preogrammer's point of view.

TABLE 3-1: STANDARD CHANNELS

Channel 0: Reserved for internal CODOS operation.
Channel 1: Input commands to SYSTEM MONITOR.
Channel 2: OQutput from SYSTEM MONITOR.

Channel 3: Available. (Input preferable).
Channel 4: Available. (Input preferable).
Channel 5: Standard input for programs.

Channel 6: Standard output for programs.

Channel 7: Available.

Channel 8: Available. (Output preferable).
Channel 9: Available. (Output preferable).

NOTES:

1. Channel 1 and Channel 2 are normally assigned to the
console by default.

2. The notation "preferable" simply means that if it is
convenient to do so, input should be assigned to the lower
numbered channels and output to the higher channels. This is
merely a convention and is not enforced in any way. All
channels can be used in either direction or bi-directionally.

TABLE 3-2: DEVICES

Device Name Description

Console. Input-output terminal device. (Required)
Null device. (Required)

Printer.

Paper tape reader and/or punch.

Terminal, other than console (e.g., a Teletype).
Visible memory high-resolution graphcis driver.

<+ dhZ O

NOTES:

1. Other devices may be named as desired during System
Generation, using a single letter for each. See Chapter 9.

DEVICE

As we have already seen, CODOS communicates with the outside

world over numbered channels. These channels can be associated
with either physical devices or with files. The devices

available on any given system are defined at System Generation
(SYSGEN), and are identified by a single letter. Every system
has at least two devices: the system console and the null device.
The system console is the terminal controlling the system
(normally a CRT plus keyboard), and is given the device name "C".

The null device is given the name "N" and is predefined to
mean a device that does nothing. This may seem of dubious merit,
but is actually very useful. For example, if you wish to run a
program which normally generates voluminous output, but you do
not want any output, you can merely assign the null device and
run the progranm.

Additional devices may be available on any given system,
and may be named as desired during System Generation. In the
interest of uniformity among systems, the recommended device
names are given in Table 3-2 for selected devices,

Remember that all devices have a single letter name.
The use of device names will be illustrated shortly in the
section describing Monitor commands.

FILES

Programs, text, and data of any type can be stored and
retrieved from floppy disk for permanent storage using CODOS. A
File is a collection of related information stored as a logical
entity on disk. Each file on disk has a unique name, designated
by the creator of the file. The name consists of from two to
twelve characters, optionally followed by a "." and a one-
character file extensicon. The first character must be
alphabetic. The remaining characters may be alphabetiec, numeric,
or the special character "_" (underline), which is used to
improve readability of composite names and to facilitate searches
for files, as will be discussed later. The single-character file
extension may be alphabetic or numeric. If the optional file
extension is omitted, a default file extension of ".C" is assumed
by the system. Thus some examples of legal file names include:

A2

YANK
MY3RDFILE.A
HIS_STUFF.T
OLD_X_Y_DATA.8

The first two file names above will have a default extension of
n Cc" appended by the system. The single character file
extension is intended to provide the user with an indication of
the kind of file. Although CODOS does not enforce any partic-
ular convention, Table 3-3 lists the standard file extensions
which are strongly suggested for use. Unlisted extensions may
be freely used to cover special kinds of files not included in
the 1list. Note that the extension must be exactly one character
long if given.

Remember that file names must have at least two characters;
this is how CODOS tells the difference between a file name and a
device name (which can have only one letter).

NOTE: The Underline character is not available on the AIM-65
keyboard. The "$" is used instead on AIM systems.

TABLE 3-3: FILE EXTENSIONS

Extension Meaning

A Assembly language source program.

B BASIC Program source.

C Command (User-defined command programs and System
Utility programs).

D Data.

G Graphic data.

H Hex file (i.e., paper tape-type format).

J Job file (i.e., a text file of CODOS commands).

L Listing.

T Text.

X Executable code other than a command (e.g., subroutine
package).

Z CODOS reserved system file.

5 AIM BASIC ROM source program (Pertains to AIM only).

Notes:

1. If the extension is not given, ".C" will be assumed.

2. Other extensions may be devised by the user as needed.

CODOS _SYSTEM MONITOR

The CODOS Monitor is an interactive program which allows the
user to enter commands to the system. The Monitor is entered
automatically during startup of the system. When the system is
"booted" up, the CODOS memory image is loaded into memory from
the disk in drive 0, and a file called STARTUP.J is read by the
Monitor and all commands on that file are executed. At the
completion of the startup procedure, a prompting message will be
issued indicating the version of CODOS which is active, and the
prompt, "»" will appear. At this time, a valid command can be
entered from the console keyboard.

Every command typed must be terminated by a carriage return,
which signals the Monitor to execute the command. Certain
characters may be used for correcting typing errors or editing
the command line during entry; these are summarized in Table 3-4.

There are two main types of commands in CODOS: User-
Commands and Built-in Commands. Built-in commands are
pre-defined by the system. User commands may be added easily at
will by writing an assembly~language program and defining it as a
Command using the built-in SAVE command. In the following
discussion, only built-in commands will be discussed, so the term
"command" will be understood to mean "built-in command".

In order to improve readability and ease the learning
process, CODOS commands ususally consist of full English
words which suggest the function to be performed. However,
any built-in command (not user command) can be abbreviated
using the "!" character. Thus, for example,

ASSIGN
ASSI!
AS!

are all equivalents for the ASSIGN command. It is only necessary
to type enough characters before the "!" to uniquely identify the
command desired.

Most commands require one or more arguments following the
command keyword. These arguments tell the system what entities
the command is to operate on. For example, the command,

ASSIGN 6 MYFILE.T
has two arguments. The first argument in this case is a channel

number, and the second argument is a file name. The command
tells CODOS to associate channel 6 with the file called MYFILE.T.

3-p

Arguments must be separated from the command keyword and
from each other by one or more blanks (not commas!). A few
commands use other special delimiters such as "=" in certain
places in the command; these will be clearly defined.

Sometimes arguments are optional, in which case the user
may elect to specify the argument or else accept the default
argument which will be assumed by the system. 1In other cases,
the user has a choice of several different kinds of arguments.
In order toc have a uniform method of describing the syntax
of various commands and arguments, the following notation
is adopted:

1. Angle brackets, "{" and ">", are used to enclose words
describing the kind of entry required.

2, Square brackets, "L" and "1", are used to enclose
optional arguments or symbols, whiech may be included or omitted
as desired,

3. Ellipsis, "...", are used to indicate an arbitrary
number of repetitions of the previous argument(s).

4, Symbols not enclosed in angle brackets are literal
symbols which must be typed exactly as shown.

5. Curly brackets, "{" and “]", are used to enclose each
of several mutually-exclusive choices, only one of which may
be selected.

For example, we could use this meta-language (a meta-
language is a language used to describe another language) to
describe several BASIC statements as follows:

GOoTO {line #)
FOR {yariable) ={value) T0OKvalu [STEP {(valued]

In the following section, each of the Built-in commands will
be defined and illustrated. Some of the commands require numeric
values for arguments. In this case, either decimal or
hexadecimal values may be used. Unless otherwise indicated, all
numeric arguments are assumed to be in hexadecimal. To specify a
"decimal argument, use the "." prefix. If desired, the "$" prefix
can be used to clarify hex values. An arithmetic expression can
be used anywhere a numeric value is called for, except for disk
drive numbers. Arithmetic expressions may be formed using the
ususal operators, "+", M.n wEn_ n/n gand "\n_ UN\" §g the
remainder operator. All expressions are evaluated left-to-right
without any hierarchy. The value entered may not exceed 65535
decimal or be less than -32768 decimal (including any
intermediate point in the computation). The following examples
illustrate the evaluation of numeric expressions:

100 evaluates as 256 decimal (100 hex).

.100 evaluates as 100 decimal {64 hex).

B+ 10 evaluates as 27 decimal (1B hex).
1+.10%3 evaluates as 33 decimal (21 hex).
$1498/.256 evaluates as 20 decimal (14 hex).
40BC 100+1 evaluates as 177 decimal (BD hex).

3-7

Character

DEL or CNTRL-H

CNTRL-X
RETURN
H

!

blank
CNTRL-S
CNTRL-C

Command

ASSIGN
BEGINOF
CoPY
CLOSE
DATE
DISK
DRIVE
DUMP
ENDOF
DELETE
FILES
FILL
FREE
GET
GETLOC
GO

LOCK
NEXT
OPEN
PROTECT
REG
RENAME
SAVE
SET

SvVe
TYPE
UNLOCK
UNPROTECT

{namey

TABLE 3-4: COMMAND EDITING CHARACTERS

Meaning

Backspace 1 character.

Delete entire line (start line over).
End-of~command.

Comment. Any characters after ";" are ignored.
Command abbreviation character. See text.
Separator between arguments.

Temporarily suspend output display.

Command abort (during display)

TABLE 3~5: COMMANDS

Purpose

Display or alter channel assignments for I=-0.
Position channel to beginning-of-data.

Copy memory block.

Close-out operations on disk specified.

Set date.

Display attributes of disks.

Designate default drive .

Display contents of memory.

Position channel to end-of-file.

Delete file from disk directory.

List names of files on disk.

Fill block of memory with a constant.

Release channel if assigned.

Load program into memory from disk.

Display load addresses of locadable file.

Begin execution of program in memory. ’

Enable write-protect on disk file.

Resume execution of program in memory.

Open-up operations on a disk.

Enable hardware write-protect on system memory.
Dispaly contents of registers.

Change the name of a file,

Save program on disk.

Set memory to value(s).

Enable or disable Supervisor Call Processor.
Display contents of file.

Disable write-protect on file.

Disable hardware write-protect on system memory.
Execute User-defined command or system Utility.

3-/e

COMMAND NAME: QPEN.
PURPOSE: To declare a disk ready for access by the system.
SYNTAX: OPEN (drive) ...
ARGUMENTS:
{drive) = disk drive number, 0 to 3 to be opened. Defaults to drive O.

EXAMPLES:

OPEN
opens the disk in drive O for operations.

OPEN 1
opens drive 1 for subsequent operations.
NOZES:

1. Every disk must be OPENed prior to performing any command or operation on
it (except FORMAT). The disk must be in the drive and the door closed at the time.
Failure to open a disk before accessing it will result in an error message;
if drive 0 is not open, an error number will be displayed without a message,
since the system gets the error messages from a disk file.

2. The system requires that an OPEN disk be present in drive 0 at all times
with a valid copy of the operating system on it. In addition, any user programs
or data may also be on the disk in drive 0. Most Monitor commands are loaded into
memory from disk as needed; therefore an open disk in drive 0 is essential.
Generally, the disk in drive O should only be closed when exchanging it for
another disk or powering down the system. Certain Utility programs such as
the single-drive copy utility open and close drive 0 automatically.

3. Unlike many other systems, it is not necessary to open or close individual
files when using CODOS. It is only necessary to OPEN each disk as it is inserted,
and CLOSE each disk before it is removed from the drive, or before powering down.

4, See the description of the CLOSE command for more details on OPEN/CLOSE
considerations.

5. The disk in drive 0 is automatically OPENed by the system when it is
"booted" up.

6. OPENing a disk which is already OPEN is permissable.

COMMAND NAME: CLOSE.

PURPOSE: To conclude operations on a disk in preparation for removing it from the
drive or powering-down the system.

SYNTAX: CLOSE {drive) ...
ARGUMENTS:
‘(drive) = desired disk drive number, 0 to 3.

EXAMPLES:;
CLOSE

closes drive 0., The default for the close command is always drive O,
CLOSE 0 1

closes drives 0 and 1. The disks may then be removed.

CAUTION: YOU SHOULD ALWAYS CLOSE EVERY DISK BEFORE REMOVING THE DISK FROM THE DRIVE
OR POWERING DOWN.

If you forget to CLOSE a disk before removing it, you will get a system error
message of "PREVIOUS DISK NOT CLOSED (OR RESET HIT)"™ when you attempt another disk
operation. At this point you can dc one of two things:

1. Put the old diskette back in and CLOSE it (be sure to get the right disk
or you'll kill ittt!!), or; ‘

2. You can ignore the error and OPEN the new disk. This will usually have no
ill effects on the disk which you failed to close. At worst, files which had all
of the following characteristics on the old disk may be truncated:

a. The file was assigned and not freed;
b. The file was written to by a user (not system) program;
c. The last operation was a write (not a read).

Thus it is unlikely that there will be any adverse affect on the un-closed disk.
HOWEVER, IF YOU FAIL TO DO EITHER (1) or (2) ABOVE IN RESPONSE TO THE ERROR
MESSAGE, YOU CAN EXPECT UNPREDICTABLE AND INVARIABLY UNPLEASANT RESULTS ON THE NEW
DISK!

COMMAND NAME: DISK.

PURPOSE: To display the number of files and remaining space on all open disk
drives.

SYNTAX: DISK
ARGUMENTS: none.
EXAMPLE:

DISK

will display the number of files and free space on all open drives. A typical
display might be:

11 FILES:0 U58K FREE
79 FILES:1 102K FREE

which indicates that drives 0 and 1 are open, with 11 files on drive 0 and 79 files
on drive 1. There is 458 K bytes (1 K = 1024 bytes; therefore about 468,992 bytes
remain. available on drive 0).
NOTES:

1. Disk space is allocated and displayed in blocks of 2K bytes.

2. The file count is in decimal.

COMMAND NAME: FILES.
PURPOSE: To display the name of every file on a disk.
SYNTAX: . FILES [{drive}]...
ARGUMENTS:
{drive) = selected disk drive number, 0 to 3. Default is always drive O.
EXAMPLES :
FILES
displays the names of all the files on drive 0O, one name per line.
FILES 1
displays the names of all the files on drive 1.
NOTES:

1. The DIR utility program can be used when it is desirable to display
information about selected files. See chapter 6.

2. As with any command, CNTRL-S can be used to temporarily suspend the
display. CNTRL-C can be used to abort the command.

COMMAND NAME:IDRIVE.

PURPOSE: To designate the default disk drive number to be used when files are
referenced without a drive being explicitly given.

SYNTAX: DRIVE {drive)
ARGUMENTS:

drive = desired drive number, 0 to 3.
EXAMPLE:

DRIVE 1
sets the default drive to drive 1.
NOTES:

1. The default drive is 0 when the system is booted up.

2. The DRIVE command only effects the drive for file name references. It
does not effect the default drive for QPEN, CLOSE, FILES, ete.

3. The drive number selected using the DRIVE command is referred to as the
"default drive".

COMMAND NAME: ASSIGN.

PURPOSE: To assign an input-output channel to a file or device, or to display all
current channel assignments.

{device)
SYNTAX: ASSIGN [{channel) {ritep[:drived](). .
ARGUMENTS :

{channel} = desired channel number, 0 to 9.
(gevicé} = single character device name.
{file> = file name desired.

¢drivey = disk drive number, 0 to 3.

EXAMPLES:
ASSIGN
displays the current channel assignments. A typical display might be:

CHAN. 1 C
CHAN, 2 C
CHAN. 6 MYTEXT.T:0

which indicates that channel 1 and 2 are assigned to the console, and channel 6 is
assigned to a file called MYTEXT.T on drive 0.

ASSIGN 6 C ; OUTPUT TG CONSCLE PLEASE.

assigns channel 6 to the system console device (terminal). Everything after the
W:t character is a comment.

ASSIGN 5 MYTEXT.T

assigns channel 5 to the disk file called MYTEXT.T on the default drive (usually
drive 0). The system responds to file assignments with either "NEW FILE" of "OLD
FILE" depending on whether or not the given file already exists. If you get "NEW
FILE" when you were expecting "OLD FILE", it probably means you mispelled the file
name. You can correct this by merely doing the assignment over, since assigning a
channel which is already assigned automatically frees the old assignment first.

CAUTION: CHANNELS 0, 1 AND 2 ARE USED INTERNALLY BY THE SYSTEM AND SHOULD NOT
BE REASSIGNED UNTIL YOU HAVE A THOROUGH UNDERSTANDING OF THE SYSTEM OPERATION!

ASSIGN 4 C 7 YCURS.A : 1
assigns channel 4 to the conscle and assigns channel T to the file called YOURS.A
on drive 1. If YOURS.A does not exist, it will be created automatically and will
contain nothing. Files which contain nothing disappear automatically when they are
FREEd from their channel assignments.
NOTES:

1, Assigning a channel to a file always positions the file to beginning of

data, even if the file is already assigned to another channel and is not at
beginning of data.

-6

2. More than one channel can be assigned to the same file or device.

3. The CODOS Monitor reads its input from channel 1 and outputs to channel 2.
These channels are both normally assigned to the console. You can, however,
reassign these channels. If you have a sequence of Monitor commands that you
execute often, you can TYPE these commands onto a file, and then ASSIGN channel
1 to the file. CODOS will execute every command on the file and then automatically
reassign the conosle when end-of-file is encountered. The Console is also
automatically assigned if an error is detected. This kind of file is called a
"Job file" and has the extension ".J". The file called STARTUP.J is a special
job file which is assigned to channel 1 by the system when CODOS is booted up.
Chpater 9 discusses STARTUP.J Jobs in some detail.

COMMAND NAME: FREE.

PURPOSE: To disassociate an Input-Output channel from a device or file,
SYNTAX: FREE {channel)
ARGUMENTS. ..
{channel? = desired channel number toc free, 0 to 9.
EXAMPLES:
FREE 6
frees channel 6 from its prior assignment.
FREE 8 4
frees both channel 8 and 4.

NOTES:

1. It is permissable to free an unassigned channel.

4-5

COMMAND NAME: SAVE,

PURPOSE: To save one or more blocks of memory on a file.
SYNTAX: SAVE <filed[: rivey][=<entry}] <tromy[=<d est.y] <tod
ARGUMENTS:

{file) = desired file name.

drivey = desired disk drive, 0 to 3. Defaults to the default drive, usually 0.

{entryy = entry point desired. Defaults to from

{from} = starting address for the block of memory.

{dest.y = address at which the block is to be loaded into memory on subsequent
GET commands. Defaults to from .

{toy = final address of the memory block,

EXAMPLES:
SAVE DOIT 200 2DF

saves the contents of memory locations $0200 though $02DF inclusive on a file
called DOIT on drive 0 (by default). Since no optional arguments were specified,
the entry point will be saved on the file as $0200, the same as the starting
address of the block. DOIT is now a User~Command, so subsequently typing DOIT will
cause the block to be loaded from disk into memory at $0200, and execution begun AT
$0200.,

SAVE RALPH_PROG.C:1 = 2424 2000 20FE 340 3A0

saves a file called RALPH PROG.C on drive 1. The file contains two memory blocks,

the first from $2000 to $20FE, and the second from $0340 to $03A0. The entry point
is $2424. Subsequently typing a RALPH_PROG:1 command will cause the two blocks of

memory to be re-loaded from disk, and program execution begun at $2424.

SAVE SUBPKG.X 400=2000 L0O+.100

saves 100 decimal bytes of memory on a file called SUBPKG.X, starting at $0400.
Since a {dest.) address was specified, a subsequent GET SUBPKG.X command will
cause the memory block to be loaded into address $2000 and up instead of the $0L00
address at which it was saved.

NOTES:

1. The existence of the "=" in the command indicates the existence of one of
the optional arguments <entry> or (dest.). Pay careful attention to the position
the arguments.

2. When using {dest.> , note that no relocation of any possible address
references is made; the memory block is still exactly as saved. Therefore
specifying (destd) is not normally a satisfactory method of relocating machine

language programs.
3. The <§ntry) point does not have to reside inside any of the saved blocks.

4, The_number of blocks saved on a single file is limited only by the number
of (froﬁ} <to7 arguments you can fit on the command line.

COMMAND NAME: GET.

PURPOSE: To load a memory image from a disk file.

SYNTAX: GET {filep[: Ldrived][= Cdest)]...
ARGUMENTS :

{file? = desired file name to be loaded into memory. See note 1 below.

{drived = drive number, 0 to 3. Defaults to the default drive, normally 0.

{dest) = destination starting address for load to be used in lieu of the
<from} address which was specified when the file was saved.

EXAMPLES:
GET MYPROG

loads the file called MYPROG into memory. It will be loaded at the address which
was specified at the time the file was created using the SAVE command. The Program
Counter will be set to the entry point address which was saved with the file.

GET OLD_PROG.X:1=100 =1B00

will load the file OLD_PROG.X from drive 1 into memory. The first block (which is
whatever size was SAVEd on the file) will be loaded starting at address $0100,
regardless of what load address was specified when the file was created. The
second block (if it exists) will be loaded starting at address $1B00. Any
additional blocks (should they exist) will be loaded at the addresses specified
during the creation of the file.

NOTES:

1. The file to be loaded must be a loadable format file such as is
generated by the SAVE command. An attempt to load a text file or other type file
will result in an error,

2. The file may consist of several non-contiguous blocks of memory, all of
which will be loaded. See the SAVE command description.

3. If fewer (dest.} arguments are supplied than there are blocks in the file
to be loaded, the remaining blocks are loaded starting at the addresses given
when they were saved.

4. If more {dest.) arguments are supplied than there are blocks in the file
to be loaded, the extra arguments are ignored.

5. GCET always sets the Program Counter, P, to the value of the Entry Point
which was specified when the file was saved.

6. Specifying (dest:? does not affect the value used for the entry point.
The Program Counter will still be set to the value specified as the entry point
when the file was saved.

7. Naturally, the GET command with (&est? specified does not relocate any
machine language code; it merely loads the memory image at a different location.
Therefore most programs will not run properly if loaded at a different address than
was intended.

q-/0

8. The GETLOC command can be used to ascertain the values of the entry 2,
{from>, and <to} arguments which were used when the file was saved.

9. The GET command will not load a file into areas of memory reserved for
CODOS unless an UNPROTECT command has been given. In addition, it will not load
directly into memory below address $0200.

COMMAND NAME: GETLOC.

PURPOSE: To display the Entry point, Starting and Final load addresses for a file
previously generated by the SAVE command.

SYNTAX: GETLOC file : drive

ARGUMENTS:

file = desired file name.

drive = disk drive number, O to 3. Defaults to default drive, usually 0.
EXAMPLES:

GETLOC VMT

will display the memory block and entry point used by the program VMT.C on drive 0.
A typical display might be:

VMT.C=500B 5000 588E

which indicates that VMT loads into addresses $5000 through 588E inclusive, and
execution starts at $500B.

GETLOC SEGS.X : 1

will display the load attributes of SEGS.X on drive 1. Assuming that SEGS.X was
saved with three distinct blocks of memory (see SAVE command), the display might

typically be:

SEGS.X=2000 2000 342p
0300 03DD
1780 1748

which indicates that issuing a GET SEGS.X:1 command (or executing SEGS.X:1) would
result in memory images being loaded into $2000 through $342D, $0300 through
$03DD, and $1780 through $17A8. If SEGS.X:1 is executed, the program will be
entered at $2000.

NOTES:

1. If the file specified was not generated by the SAVE command or other
program generating loadable-format files, an error will result.

COMMAND NAME: DELETE.

PURPCSE: To remove a file from the disk.
SYNTAX: DELETE <f11e>[_: <drive>] ...
ARGUMENTS:

4 file) = file name to be removed.
{ drive) = disk drive number, O to 3. Defaults to the default drive, usually O.

EEERE AR IR RN RN RN RN RR RN RN NEN
CAUTION: USE THE DELETE COMMAND WITH CARE; THERE IS NO PROMPT FOR A "VETO"

BEFORE THE FILE IS REMOVED, SO TYPE CAREFULLY! ALL IMPORTANT FILES SHOULD BE

LOCKED IMMEDIATELY AFTER THEIR CREATION TO PREVENT INADVERTANT DELETION BY AN

ERRONEGUS DELETE COMMAND!
B R NI I RN R RN RN RN RN RN RN RN R RN E RN RA NS

EYAMPLES:
DELETE MYDATA

deletes the file MYDATA.C from the default disk (usually drive 0).
DELETE PROG_1A:1 Y3 HIS_STUFF.T

deletes three files, one from drive 1 and two from drive O,

COMMAND NAME: RENAME.
PURPOSE: To change the name of an existing file.
SYNTAX: RENAME (file)[: dirive}] (newfile)
ARGUMENTS:
{filed® = the existing file name.
Ldrive) = disk drive number for the exisitng file. Defaults to the default
drive, usualily 0.
{newfiley = desired new file name.
EXAMPLES:
RENAME JUNK GARBAGE
changes the name of file JUNK.C on drive 0 to GARBAGE.C.
RENAME MYNEWTEXT.T :1 MYOLDTEXT

changes MYNEWTEXT.T on drive 1 to MYOLDTEXT.C. Since no extension was given for
the new file name, ".C" was assumed.

4-/¢

COMMAND NAME: BEGINOF
PURPOSE: To position a file associated with a given channel to beginning-of-data.
SYNTAX: BEGINOF {channel) ...
ARGUMENTS:
¢channel} = desired channel number, previously assigned to a file.
EXAMPLES:
BEGINOF 5

positions the file presently assigned to channel 5 to beginning of data.

BEG! 7 8 9
repositions the files assigned to channels 7, 8, and 9 to beginning of data.
You will recall that the "!" character can be used to abbreviate any built-in
command.
NOTES:

1. It is permissable to use the BEGINOF command on a channel which is assigned
to a device instead of a file. In this case, the command is ignored.

415

COMMAND NAME: ENDOF.
PURPOSE: To position a file associated with a given channel to End-of-File.
SYNTAX: ENDOF {channel) ...
ARGUMENTS:
{channel) = desired channel to position.

EXAMPLES:

ENDOF 5
positions the file assigned to channel 5 to End-of-File.

END! 6 4
positions the files assigned to channel 6 and channel U4 to End-of-File.
NOTES:

1. If the channel specified is assigned to a device and not a file, the
command is ignored,

2. The ENDOF command can be used (with caution) to concatenate files or
extend files. See the TYPE command for details.

3. Don't forget that ASSIGN always re-positions a file to beginning of data;

therefore assigning another channel to the file after using ENDOF will negate
the effect of the ENDOF command.

9~-/¢

COMMAND NAME: LOCK.

PURPOSE: To enable the software write-protect for a file.

SYNTAX: LOCK <filep[: <drive>] ...

ARGUMENTS:

{file) = desired file name.

{drivep) = disk drive desired. Defaults to default disk, usually drive 0.
EXAMPLES:

LOCK INVENTORY.T

s¢ts the write-protect for the file called INVENTORY.T on drive O, This will not
affect other files on the disk,

Notes:

1. The LOCK command is used to protect files against INADVERTENT destruction.
It is not intended to provide any kind of file security. For floppy disk systems,
the most appropriate method of securing information is physical security of the
disk.

2. The LOCK command will protect files from DELETE, SAVE, and RENAME
commands, and from SVCs which write or truncate the file. It will NOT protect
files from the FORMAT utility program, nor from other software using the
disk controller directly.

3. A backup disk should always be maintained for all important files on any
floppy disk system.

4-17

COMMAND NAME: UNLOCK.

PURPOSE: To disable the software write~-protect for a file.
SYNTAX: UNLOCK (rne)[_: {rivep] ...

ARGUMENTS:

{file) = desired file name.
<{drive} = desired disk drive, 0 to 3. Defaults to default drive, usually 0.

EXAMPLES:
UNLOCK VALUABLES

removes the write-protect from the file called VALUABLES.C on drive 0.
UNLOCK GOQODIES.T:1 GOODIES.A:1

removes the write-protect from both files specified.

NOTES:

1. It is permissable to UNLOCK a file which is not LOCKed.

Y-1g

COMMAND NAME: TYPE,

PURPOSE: To display or print a text file.

(device» <dest.device)
SYNTAX: TYPE 9{file} :{drivedj]f{dest.filep :(drived
{channel) {dest.channely
-

ARGUMENTS:

file} = desired file name to type.

drive} = desired disk drive, 0 to 3. Defaults to Default drive, ususally 0.
<channe$- = desired pre-assigned source channel number, 0 to 9.

dest.devicey = desired output device name. Defaults to Concole ("C").

dest.file) = desired file to recieve output from TYPE.

dest.channel}= desired pre~assigned channel to recieve output from TYPE.

‘gdevice7= single character source device name.

EXAMPLES:
TYPE MYSOURCE.A

will display the file MYSOURCE.A on drive 0 on the console.
TYPE C NEW.T

will accept input from the console keyboard and put it on a file called NEW.T.
This is one way to create a text file.

TYPE 5 STUFF.T:1

will accept input from the file or device assigned to channel 5 and output it to
the STUFF.T file on drive 1.

NOTES:

1. The first argument specifies the source for the TYPE command; the second
argument is optional and specifies the destination.

2. The second argument defaults to the conscle (C) device.

3. When the source for the TYPE command is a device, for example the console,
CNTRL-Z is used to enter and end-of-file and therefore terminate the TYPE command.

4. If a file name is given for either argument, the file will be
automatically positioned to beginning-of-data before typing starts. However, if a

channel is used for the argument, no positioning takes place. This fact can be
used to advantage to copy parts of a file or concatenate files. For example:

ASSIGN 6 OLDTEXT.T
ENDOF 6
TYPE C 6

can be used to append lines onto the existing file OLDTEXT.T from the
console. However,

TYPE C OLDTEXT.T

would overwrite the beginning of the file, so be careful!

419

COMMAND NAME: DATE.

PURPOSE: To set the creation date for any new files generated.
SYNTAX: DATE < dd-mmm-yy»>
ARGUMENTS:
{dd-mmm-yyY = desired date.
EXAMPLE :
DATE 08-AUG-80

sets the date field to "08-AUG-80". Any files created thereafter before powering
down the system, re-booting, or issuing another DATE command will be dated
accordingly. The da:e field for files is displayed by the DIR Utility.

NOTES:

1. The first 9 characters (after any leading blanks) are used for the date.
No format checking is provided.

2. The date is assigned to a file at its initial creation. It is not altered
by any changes to the file, including writing, truncating, or renaming it.
However, since COPYF and TYPE (with a file name for a second argument) actually
create a new file, these new files will have the current date, not the original.
Therefore you can effectively change the date on any file by using the date
command, copying the file and deleting the original.

3. The DIR Utiltiy ecan be used to ascertain the creation date of a file.
4. Wnen CODOS is booted up, it will prompt for the initial date entry by the

user. If the user replies with a carriage Return, the default date field,
"EUNDATED*" will be used.

4-20

COMMAND NAME: DUMP,

PURPOSE: To display the contents of a block of memory in hexadecimal and as ASCII
characters.

SYNTAX: DUMP {from) [(to) [<echanne1)]]
ARGUMENTS :

{from» = desired starting address.

{to) = desired ending address (see note 1 below). Default is<fromp +7.

{channel? = desired channel on which to display the output. Defaults to
automatically assigned available channel to Conscle.

EXAMPLES:
DUMP 1000
displays 8 bytes of memory starting at $1000.
DUMP 200 213

displays memory starting at $0200 and will include memory through $0213. The
resulting display might look similar to:

0200 00 21 OC AA OO0 AA 00 76 .!..... v
0208 34 87 41 42 43 AA 00 AA 4.ABC...
0210 10 FF 55 FF 55 FF 55 FF ..U.U.U.

Of course, the actual values displayed will depend on the contents of memory. The
eight rightmost characters of each line are the ASCII characters for the line, with
each non-displayable character converted to ™.", including blanks.

DUMP 1000 1000+.500 7

dumps 500 (decimal) bytes starting at $1000. The display will be output to the
device or file currently assigned to channel 7.

NOTES:

1. A complete line is always displayed even if the from address is not an
even multiple of 8 bytes. Sufficient complete lines will be displayed to insure
that {fromy is included in the display.

2. As with any command, CNTRL-S can be used to temporarily suspend the
display. CNTRL-C can be used to abort the DUMP.

2. The righthand portion of each line of the dump displays "." in place of
each non-printable character, including blanks. Characters considered printable
are any of the 96 ASCII printable ASCII characters except blank, provided bit
7 is O.

b-2t

COMMAND NAME: SET

PURPOSE: To set the value of memory locations.
v "{character) ... "
SYNTAX: SET (from)[=]{<{value) .o
*{character) ...'
ARGUMENTS:

{from) = address at which to deposit the first value.
{value) = numeric value or expression to be deposited.
<characten> = an ASCII character to be depositied.

EXAMPLES:
SET 2000= 1B

sets address $2000 to $1B.
SET 2006 "ABC"

sets $2006 to $41 (ASCII "A"), $2007 to $42 (ASCII "B"), and $2008 to $43.
SET 200 80-,10 " n 80p-.20 'm

sets $0200 to $76, $0201 through $0203 to $20 (ASCII blank), $0204 to $5C, and
$0205 to $22 (an ASCII double-quote character).

Notes:

1. The "=" is optional and has no effect on the meaning of the command.
COPS
2. As each byte is deposited in memory, it is verified by APE¥N=6S. If
reading the byte back from memory results in a bad compare to the value deposited,
an error message is issued.

3. Addresses are checked for validity before depositing each value. If an
attempt is made to set Reserved memory, an error message will be issued, unless an
UNPROTECT command was issued previously.

L, Ocecasionally it may be desired to set values into several adjacent I-0
ports in a single command, The SET command generally can't do this since the
verify may fail. One way to solve this is to SET the desired values elsewhere
in memory and use the COPY command to actually install the values into the
port addresses, since COPY has no validation or range checking.

gt

COMMAND NAME: FILL.
PURPOSE: To fill a block of memeory with a constant.
’ "{character>"
SYNTAX: FILL <{from) {top [=] y(value>
'{character)’
ARGUMENTS:
{frpm} = desired starting address to be filled.
<to) = desired ending address for fill operation.
(value} = numeric constant to be deposited into each byte of the memory block.
{character} = single ASCII character to be deposited into each byte of the
memory block.
EXAMPLES:
FILL 200 2FF O
Tills every byte between $0200 and $02FF inclusive with $00.
FILL 2301 2301+,10=" "
fills $2201 through $230B with $20 (an ASCII blank).
FILL O E Tt
fills $0000 though $000B with $22 (an ASCII "),
NCTES:

1. As each byte is deposited in memory, the result is verified by the system.
An attempt to fill ROM, reserved-memory, defective memory, or non-existent memory
will abort the command at the point where the error occurred.

2. The FILL command may be used to fill memory locations reserved for CODOS
if an UNPROTECT command has been issued. Indiscriminant FILLing can lead to system

crashes.

3. Either single or double quote marks may be used to delimit the character,
but must be the same on both sides.

4-23

COMMAND NAME: COPY.
PURPOSE: To copy a block of memory to another memory location.
SYNTAX: COPY {from){to) Hest.p
ARGUMENTS:
<from> = starting address of block to be copied.
(to) = ending address of block to be copied.
(dest.) = desired starting address of destination of copy.
EXAMPLES:
COPY 100 2FF 2000
copies $0100 through $02FF to $2000 (through $21FF).
COPY 2000 2000+.80 2002
copies $2000 through $2050 to $2002 (through $2052).
NOTES:
1. The block may be any size.

2. The destination for the copy can overlap the block being copied. This
fact can be used to advantage to "open up" or "close up" space in memory.

3. Copying can be performed in either direction (higher address to lower
address or lower address to higher address).

-2y

COMMAND NAME: REG.
PURPOSE: To display or alter the contents of the user's 6502 registers.
"{characterp"

SYNTAX: REG {{reg. desig) [=] (valuep cco
'{character}

ARGUMENTS:
{reg. desig.> = register name to be altered, A, X, ¥, F, S, or P.
¢valuey = desired numeric value or numeric expression.
{character® = desired ASCII character,
EXAMPLES:
REG
will display the contents of the registers.
REG A=0
sets the A register to $00.
REG X .65 Y="B" A = 10

sets the X register to $41, the Y register to $42, and the A register to $10.

NCTES:

1. The REG command without arguments displays the user's registers in the
format illustrated below:

«es....Current Program Counter {(P)

.

«.....Contents of memory at P through P+2

. . «.....Contents of Accumulator (A)

Pz 1BIF (201A17) A=2A X=05 ¥=00 F=32 S=FD

. . . .

. . .

Contents of X reg.vvveeens . . .
Contents of Y reg.......... . y
Contents of Flags(F)....... .

Current Stack pointer(S)....

All values are given in hexadecimal. The key letters given in the display are
the same as the(%eg. desig.> needed to set the register values. Naturally the
actual values displayed will depend on the register contents at the time.

(continued...)

9-28

The individual bits in the Flags (F) register display are the same as the
hardware Processor Status Word, as described below:

N LV wBiw B ol % €
. : : : E A :.....Carry
. . : . i : Zero result
. ' . . . :.............Interrupt disable
: : .) ceeresrasssaasa. . Decimal mode
. : : :Break command
: : : ++++..Undefined
. ve.r..Overflow
:.............Negative result

2. Either single or double quotes may be used to enclose the character when
setting a register to an ASCII character, but the same type of quote must be
used on both sides of the character.

q4-2¢

COMMAND NAME: GO.

PURPOSE: To begin execution of a‘machine-language program in memory.
SYNTAX: GO <from)

ARGUMENTS:

(from) = desired starting address. Defaults to current value of the Program
counter (as displayed by the REG command).

EXAMPLES:
GO

begins execution at the current address of P. The current value of P can be
displayed using the REG command.

GO 200
begins execution of a machine language program at $0200.
NOTES:

1. Upon entry to the program, the registers will be set as displayed (or
defined) by the REG command, except the stack will be discarded (that is, S=FF).

2. The program is actually entered by a JSR instruction, so that a
corresponding RTS will return control to the system. If a program re-enters CODOS
in this manner, a subsequent REG command will display the status of all registers
except P at the time of the RTS. This is useful for debugging subroutines since
the GO command can be used to enter the subroutine, and the routine will return to
CCDOS on completion with the contents of the registers displayable.

3. The difference between the NEXT command and the GO command is that the
NEXT command preserves the stack and enters the program via a jump (thus
effectively continuing execution), whereas the GO command discards any stack (sets
stack pointer to FF) and enters the program via a JSR.

COMMAND NAME: NEXT.

PURPOSE: To resume execution or initiate execution of a machine language progran
in memory,

SYNTAX: NEXT[{from)]
ARGUMENTS:

{from) = starting address. Defaults to current value of the Program Counter
(P), as displayed by the REG command.

EXAMPLES:

NEXT
Wwill begin execution at the address currently stored in the P register.
NEXT 223B

will begin execution at $223B.

NOTES:

1. The values of all registers upon entry to the program will correspond to
the values shown or set by the REG command. This includes the stack pointer.

2. The program is actually entered via a JMP instruction, so that an RTS
instruction will return to the address on the top of the stack, not to the
CODOS monitor.

3. The difference between GO and NEXT is that GO enters the program with a
JSR after discarding any stack (i.e., sets SzFF), wheras NEXT enters via a JMP
with the stack preserved. The primary advantage of the NEXT command is it
enables a user to continue execution after a BRK has been encountered. A
rudimentary form of breakpoints can be used by setting a $00 byte into a
program and executing GO. When the BRK ($00) is encountered, control will
return to the monitor. The registers can then be altered or displayed as
desired. Tc resume execution, use the SET command to replace the BRK with the
original opcode, use the REG command to set P to the address of the restored
opcode, and type NEXT. The program will continue execution in the normal manner.

4-28

lCDMMAND NAME: PROTECT.
PURPOSE: To enable the memory-protect hardware on the System 8k block of memory
on the disk controller board, and enable the reserved-memory checking for SET and
FILL commands., ;
SYNTAX: PROTECT
ARGUMENTS: none.
EXAMPLE:

PROTECT
NOTES:

1. The CODOS system normally "comes up" in protected mode.

2. In protected mode, the system will not allow any SET or FILL command into
the portion of page 0O reserved for CODOS, nor intc the stack or the 8K block of
system memory on the disk controller.

3. The effects of PROTECT are nullified by an UNPROTECT command.

L, PROTECT and UNPROTECT do not affect the disk or the effect of LOCK and
UNLOCK commands.

y-29

COMMAND NAME: UNPROTECT.
PURPOSE: To disable the hardware write-protect on the 8k of system RAM on the
disk controller board, and disable the system reserved-memory checking for
SET and FILL commands.
SYNTAX: UNPROTECT
ARGUMENTS: none.
EXAMPLE :
UNPROTECT
NOTES:

1. Once UNPROTECTED, the SET and FILL commands will be able to freely
overwrite normally-reserved areas of memory including the part of page 0 used by
CODOS, page 1, and the System RAM on the disk controller. Naturally, casual abuse
of this facility is likely to cause strange and invariably unpleasant results.

2. GET can load into System RAM after an UNPROTECT command, but not into
page 0 or 1. The only way to lcad a program into page O or 1 is to use
GET with a <dest.)> argument specified elsewhere, and then COPY the memory image
into the desired locations.

4-20

CCMMAND NAME: SVC.
PURPOSE: To enable or disable SVCs (upon subsequent entry to user program).
SYNTAX: SVC[off)]
ARGUMENTS:
<§ff} = any non-blank argument. Defaults to no argument.
EXAMFLES:

svC
will cause SVCs to be enabled upon subsequent entry into any user program.

SVC OFF
will cause SVCs to be disabled upon subsequent entry into any user program.
NOTES:

1. The status of the SVC enable determines what action takes place when a BRK
($00) instruction is encountered in a user program, If disabled, control returns
to the operating system Monitor and the register contents are displayed. If
enabled, control is passed to the SVC processor, as discussed in the Assembly

Language Interface section,

2. Dumping memory location $EE will not show the current SVC status

since it is not set until a user program is entered.

Y-3/

EXTENSIONS FOR AIM-65 COMPUTERS

In addition to the standard features of CODOS, several extensions are included
for AIM-65 systems. These extensions include I-0 drivers for the AIM keyboard and
display/printer, special keys on the keyboard, and interfacing for the AIM Monitor
and ROMs to the disk. These functions are all included in the AIMEXT.Z file on
the distribution disk, which must be loaded into memory during booting-up by
the STARTUP.J file unless the features are not to be used (in which case alternate
I-0 console drivers must be defined),

Special keys:

ESC Exits CODOS to the AIM monitor. This is the only proper way to exit
CODOS to the AIM Monitor.

F3 When in the AIM monitor, depressing F3 will exit the AIM monitor and
re-enter CODOS (assuming CODOS has been booted up before).

CNTRL Depressing CNTRL will temporarily suspend console output. Hit any
key to resume.

NOIES:

1. Since BASIC uses almost all of Page 0, hitting F3 automatically copies
the part of page O which conflicts with CODOS to another area. Depressing
ESC automatically restores the saved page-0 image. In this way, CODOS will not
interfere with BASIC operation.

2. If you use RESET to exit from CODOS, the conflicting BASIC page 0 will not
be restored.

Interfacing AIM Monitor and ROMs to disk:

After booting up CODOS, you may return to the AIM Monitor using the ESC key.
You may then load and dump {"L" and "D" commands), LOAD and SAVE BASIC programs,
Edit and Assemble using CODOS disk files.

For example, to save a BASIC program, enter BASIC in the ususal fashion using
the "5" command from the AIM Monitor. BE SURE TO SPECIFY THE MEMORY SIZE AS
22527 (OR 20479IF VMT IS IN USE). If you instead reply with RETURN, BASIC will
wipe out the AIM I-0 drivers and crash the system. When you are ready to save your
program, type SAVE as usual. AIM BASIC will prompt:

0UT=

Reply with "U" (for user-device). This will invoke the CODOS interface routine
whiech will prompt:

FILE=
Type in the desired file name, for example:
STARTREK.5:1

CODOS will save the file and return control to BASIC. 1In the event of an error you
can use ESC and "6" to get back into BASIC to do it over.

In the same manner, you may load programs for BASIC., The speed at which programs
load is limited by the display speed, but is still much faster than tape.

The same procedure can be used for locading and dumping memory. Keep in mind
that the AIM saves memory images in a paper-tape format. These can be loaded
using the AIM "L" command but not the CODOS GET command. You will probably
want to use the CODOS SAVE command instead of "D" on the AIM.

If you have the AIM assembler ROM, you may use disk files too. You may
assemble directly from disk files, and output either the listing or the object
code to the disk file, but not both. Of course if you really want both on disk
all you have to do is assemble twice. You may not use .FILE directives to link
multiple disk files together; however, this is not much of a hardship since you
can easily concatentate files together in CODOS before assembly, using the
instructions given for the TYPE command. Again, remember that the output from
the AIM assembler is a paper~tape format file, which can only be lcaded into memory
using the AIM "L" command. Once loaded, it can be saved as a User-command file
by entering CODOS and using the SAVE command.

=2

CODOS UTILITY PROGRAMS

Utility Programs differ very little from built-in commands from the user's
viewpoint. Utilities are invoked from the Monitor by merely typing the name
of the desired Utility followed by any required or optional arguments, just as
is the case for the built-in commands. However, the Utilities have the following
distinctions:

1. The names of the Utility programs appear in the disk directory just like
any user command, and can be deleted if desired.

2. The Utility programs do not execute in the System 8X of RAM, but elsewhere
in memory. Most Utility programs use a fairly large amount of memory because
the programs need a large buffer space to perform their function efficiently.

3. Utility names cannot be abbreviated using "i",

The standard Utilities supplied are listed in table 6~1, and are described in

the following section.

TABLE 6-1. UTILITY PROGRAMS

Name Function

DIR Display file attributes for selected file(s), using "wildcard"
name matching.

COPYF Copy file on multiple-drive system.
CCPYF1DRIVE Copy file(s) on single-drive system.
FORMAT Prepare a new disk or erase an existing disk; test and bypass

defective sectors; copy operating system.

&/

UTILITY NAME: DIR.

PURPOSE: Tc display the attributes of selected files.
SYNTAX: DIR {pattern) ...

ARGUMENTS:

{patternp = desired file name, optionally using "wildeard" characters as
described below:

¥ matches any sting of characters terminated by (but not including) "."
? matches any single character.

- {dash) matches any string of characters terminated by and including "_"
(underline). See note 1 below.

The default pattern is "¥,?" on the default drive, ususally O.
EXAMPLES:
DIR

will list the attributes of all the files on drive 0. A typical display might be:

APEX.Z :0 L 11-AUG-80 $0018C0
AIMEXT.Z :0 L 11-AUG-80 $0001BF
SVCPROC.2Z :0 L 11-AUG-80 $00018F
COPYF.C :0 L 11-AUG-80 $000082
MYTEXT.T :0 - ®UNDATED* $0010CD

The first column is the file name and extension. The ":0" indicates the
drive. The next column either contains "-" or "L", The "L" indicates that the
file is locked. The next column is the creation date for the file. The final
column is the file size in hexadecimal bytes.

DIR *.T
will display the names of all files on drive 0 with a ".T" extension.

DIR *,7:1
will display all files on drive 1.

DIR IN’ENTORY.? ORDERS.?
will display all files on drive O named INVENTORY or ORDERS with any extension.

DIR DATA -VS_Z.D

would display the attributes of file names such as DATA_X_VS Z.D or DATA Y VS_Z.D,
but not DATA X VS_Y.D

DIR OLD¥.A
will display the attributes of any file starting with "OLD" with an ".A" extension.
NOTES:

1. The underline character is not available on the AIM-65 keyboard. On the
AIM, the "$" character can be used in lieu of "_" (underline). The "=" character

-

therefore matches any string terminated by a "$" on the AIM.

2, In order to display the attributes of files on drives other than 0, the
(pattern) argument must be given. For example, typing "DIR 1" will cause
CODOS to attempt to execute the program called DIR on drive 1., If the DIR
Utility exists on drive 1, then it will be executed and since no arguments are
given, it will display the attributes of all files on drive 0. To display
all files on drive 1, the correct command is "DIR ¥.2:1v,

3. M"Wildcards" are not available in other commands or Utilities.

UTILITY NAME: COPYF.
PURPOSE: To copy files in a multi-drive system.
SYNTAX: COPYF {file)[: Sgrive)] (newfile)[: (newdriveﬂ
ARGUMENTS:
{file) = desired file name to copy.
{drive} = disk drive where file is to be found. Defaults to default drive,

ususally O.
(newfile} = desired new file name desired. Defaults to file .

(newdrive) = desired destination disk drive, 0 to 3. Defaults as follows:
if drive =... then default newdrive =...
0 1
1 0
2 3
3 2
EXAMPLES:

COPYF TURKEY

copies the file TURKEY.C from drive O onto drive 1. The new file on drive 1 will
also be named TURKEY.C.

COPYF DATA.D:1
copies file DATA.D from drive 1 to drive 0, with the same name.

COPYF CLONE NEWCLONE:O
duplicates file CLONE on drive 0. After the command, both CLONE and NEWCLONE will
be on drive 0; except for the name and creation date, they will otherwise be
identical.

COPYF STUFF.T:3 OLDSTUFF.T:1

copies file STUFF.T from drive 3 to drive 1 and changes the file name on the
drive 1 file to OLDSTUFF.T.

e

UTILTIY NAME: COPYF1DRIVE.
PURPOSE: To copy files onto another disk in a one—drive system.
SYNTAX: COPYF1DRIVE
ARGUMENTS: none.
EXAMPLE :
COPYF1DIRVE

executes the single-drive file copier, The Utility is completely interactive, and
will prompt:

PUT SOURCE DISK IN.
FILE (OR CR IF DONE)?=

Type in the name of the file to be copied. The Utility will prompt:

PUT DEST. DISK 1IN,
CR WHEN READY.?=

Remove the source disk from the drive and insert the desired disk to receive the
copy of the file. This disk must have been previously formatted. When the new
disk is in and the door is closed, depress carriage return. Ususally at this
point the system will prompt:

PUT SOURCE DISK 1IN,
FILE (OR CR IF DONE)?:=

which indicates your file has been copied and you may now copy another file. If
you do not want to copy ancther file, put whichever disk you want to use (old

or new) into the drive and hit Carriage return. If you wish to continue copying
other files, insert the desired source disk and type the file name.

Occasionally some files will be too long for the COPYF1DRIVE Utiltiy to
copy in a single pass. In this case, the Utility will prompt:

PUT SOURCE DISK IN.
CR WHEN READY.?=

when you depress Carriage return, it will copy the remainder of the file. Several
passes may be needed for files much larger than memory.

NOTES:

1. COPYFIDRIVE should never be executed from a job file, but only from the
console. .

UTILITY NAME: FORMAT.

PURPOSE: To erase and re-format a disk for CODOS I-0, test and bypass defective
disk sectors, and copy the operating system files to the disk.

SYNTAX: FORMAT
ARGUMENTS: none.
EXAMPLE:
FORMAT
initiates the interactive FORMAT Utiltiy. The Utiltiy will display different

prompts, depending on whether you have a single-drive or multiple-drive system.
On a Multiple Drive system, the program prompts:

WARNING: FORMAT WILL IRREVOCABLY
ERASE EVERYTHING ON DISK IN DRIVE 1.
ARE YOU READY (Y/N)7=

Any reply starting with "Y" or a carriage return will be interpreted as a "YES™"
reply. Anything else is a "NO" reply and aborts the command. Before replying make
sure the disk you want to format is in drive 1. A "YES" reply will cause FORMAT to
erase all tracks on the disk, write new timing information on the tracks, and test
the directory track for bad sectors. All this takes about a half a minute. It
will then prompt:

WANT TO TEST FOR BAD SECTORS {(Y/N)?=

If you want to test every sector on the disk, type "YES", Testing takes about 3
minutes to complete. It is normally not essential to test diskettes unless you
have doubts about the integrity of the disk., The test procedure consists of
writing random data into every byte of every sector on the disk, reading it all
back and comparing to the data written. If any errors occur, the sector will be
bypassed automatically during file allocation by the system and not used. A
message will indicate what track and sector was bad and bypassed. If the error
occurs in the directory or system overlay portion of the disk, the Utility aborts
with the message "DISK UNUSABLE", since directory sectors cannot be bypassed.

The next prompt issued by FORMAT is:
DISK VOLUME SERIAL NO. (VSN)?=

Enter any hex number desired between 0 and FFFF. This Volume Serial Number is
written in the directory area of the disk and is intended to uniquely identify each
disk. Therefore every disk should be given a unique VSN. It is suggested that the
VSN also be copied onto the external disk label using a SOFT magic marker when the
formatting is done. Although the VSN is not used by the system for any purpose in
this version, future releases will use the VSN for certain verification operations,
In any event, you may assign any VSN you wish. The system will next prompt:

WANT TO COPY DRIVE O SYSTEM (Y/N)7=
If you want to have a copy of the operating system on the newly-formatted disk,

reply "YES"™. Normally you will want to copy the system onto all new disks. On
multiple drive systems, it is only necessary for the disk in drive 0 to have an

é-¢

operating system image on the disk. Therefore if you only plan to use the new
disk in another drive, you can reply "NO". The advantage of this is that you
gain about 20 K of additional free space on the disk. Normally this small saving
in space does not justify the added potential inconvenience of being unable

to "boot up" or run the disk in drive O.

When the copy operation is complete, the Utility issues the message:
NEW DISK IS NOW OPEN.

The FORMAT Utility is completed. To ascertain which files were copied by the
FORMAT program, type:

FILES 1

You will want to use the COPYF Utiltiy to copy additional files. 1In particular,
you will probably want to copy the COPYF Utiltiy and the FORMAT Utility, and any
device drivers (such as VMI) needed by the STARTUP.J file. These are not copied by
FORMAT. At this point, the disk in drive 1 can be used to "boot-up" the operating
system at any future time by inserting it in drive 0 and executing the boot loader.

For single-drive systems, a similar dialog will be initiated by FORMAT, except
that you will be prompted to change disks for copying the system. You will not
be given the option of not copying the system, since every disk must have it in
a one~drive system. Use COPYFIDRIVE to copy the additional files desired upon
completion of the Format utility.

INTERFACING USER-WRITTEN ASSEMBLY-LANGUAGE PROGRAMS TO CODOS

Introduction

This section discusses methods by which user-written assembly-language
programs may communicate with the outside world through the CODOS operating system,
and take advantage of various utility functions provided by the system. Using the
functions described here can greatly reduce program development time and effort.

Most operating systems provide a degree of support for assembly-language
programming by making available the addresses of certain system subroutines which
the user can call to perform I-0 or other functions. For example, to output a
character to the console, you might put the ASCII character into the A register and
call the driver subroutine for the console display device. CODOS does not use this
method, but instead provides a more powerful tool called the Supervisor Call
Instruetion (SVC). The SVC concept is not new; SVCs are found in various forms on
rany large mainframe computers.

The following discussion assumes a knowledge of 6502 assembly language
programming on the part of the reader.

How SVC's work

The CODOS implementation of the Supervisor Call capability consists of a BRK
instruction ($00) followed by a one-byte numeric code which tells the system what
function is required. The code numbers are listed in Table 7-1. Effectively, the
SVC is a lot like a JSR (Call Subroutine) instruction, except that it is two bytes
long instead of three, and the second byte is not an address, but a code which
telis what pre-defined system subroutine is to be called.

Why are SVC's better than a straightforward JSR? There are several reasons:

1. SVCs are address-independent. This is by far the most important advantage
of SVCs. It means that future system upgrades which may alter the addresses of
actual system routines will not affect the SVC numbers, and therefore will not
adversely affect programs using SVCs. It also means that, for example, a program
on an AIM-65 computer with CODOS at $8000 can be transported to a KIM system with
CCDOS at $EO000 and run without modification. If subroutine calls were used
instead, it would be necessary to patch all the JSRs to the system routines before
execution.

2. S8VCs use less memory. Two bytes are cheaper than three.

3. SVCs preserve the values in registers. All registers are restored to
their condition upon entry to the SVC when returning to the calling program, except
when returning values to the calling program. This saves the programmer a lot of
unnecessary saving and restoring registers.

4, SVC's are easier to debug. If an error is detected by the system while
processing an SVC, the program will abort and CODOS will display the exact address
of the offending Supervisor Call, the values of all the registers at the time of
the SVC, and an error message explaining the difficulty. Illegal or unimplemented
SVCs are also trapped in the same manner.

initialization and Parameter Passing

In order to use SVCs, the user program must first enable the Supervisor by
setting the SVC Enable flag, SVCENB (address $00EE), to $80 (bit 7 must be set to
1). If SVCs are not enabled, any BRK instruction will simply return to the Monitor
with a display of the location of the BRK and register contents. Note that the
SVCENB flag must be set to $80 by the user program, or by the SVC command. Setting
$ee to $80 from the Monitor using the SET command will not work. The recommended
procedure is to have the program set the SVC enable flag.

7-3

TABLE 7-1: CODOS SVC NUMBERS

SVC# Description Pass Regs. Returns Regs.
0 Return to CODOS Monitor - -

1 Not currently defined

2 Output inline message (see text) - -

3 Input byte from channel X A, F

4 QOutput byte to channel X -

5 Input line from channel X,U5 AVYF
6 Output line to channel X,Y,u6 -

7 Output string on channel X,Y,U6 -

8 Decode ASCII hex to value X,Y,U5 AY,F,UQ
9 Decode ASCII dec. to value X,Y,U5 A,Y,F,U0
10 Encode value to ASCII hex ¥X,Y,u0,U6 Y

1M Encode value to ASCII dec. X,Y,u0,ub Y

12 Querry default buffer addr. - Us,Ub,Y
13 Not currently defined

14 Querry channel assignment X A,F

15 Read record from channel X,01,02 F,01,02
16 Write record to channel X,utr,u2 F

17 Pesition file to beginning X -

18 Position file to end-of-file X -

19 Position file X,u7 U7
20 Querry file position X X,07

21 Assign channel to file/device X,A,U3 A,F
22 Free Channel X -

Note: This is a preliminary list. Other functions will be added later.

TABLE 7-2: CODOS PSEUDO-REGISTERS

Reg. Address Special Useage or Function

uo $B0-B1 Often used for passing numeric values

U1 B2-B3 Often used for passing an address

U2 B4-B5 Often used for passing address or size information

U3 B6~BT ———

Ui B8-BY —_—

U5 BA-BB Points to start of input-line«buffer

b BC-BD Points te start of output-line-buffer

u7 BE-CO 24 bit register used for passing File Position Ordinal
NOTES:

1. All values are passed in the usual 6502 fashion with low byte first.

2. The memory locations shown are not used by the system for any purpose
whatsoever except processing user SVCs. This memory can therefore be freely used
by the user.

3. The SVC enable flag is at address $EE.

-2

Usually, some type of argument needs to be passed to the Supervisor and/or
returned to the user program from the Supervisor. The method for passing arguments
is defined for each SVC individually, and may be done in three possible ways:

1. Arguments may be passed or returned in 6502 registers.

2. Arguments may be passed in one or more YPseudo-Registers" in page zero.

3. Arguments may be passed "in-line", immediately following the SVC.

Before proceeding further, an example program will illustrate SVC usage.

Example Program 1: Displaying text message.

The first SVC we shall examine in an example is SVC 2, which outputs a message
over a channel. This is a very unusual SVC in that the argument is passed in-line.
However, it is so frequently needed in programming that it deserves our first

attention.

PROBLEM: Write a program to display the message "HELLO THERE." on the console.

SOLUTION:
SVCENB = $EE ;SVC ENABLE FLAG LOCATION
;
.= $200 ;PROGRAM ORIGIN
GREET LDA #$80
STA SVCENB ;ENABLE SVCS
BRK ISV, < ;
.BYTE 2 :...#2 = OUTPUT INLINE MESSAGE...
BYTE 2 ;...OVER CHANNEL 2...
.BYTE 'HELLO THERE.'
.BYTE 0 :0 TERMINATES MESSAGE TEXT
RTS :RETURN TO MONITOR OR CALLING PROGRAM
.END
EXPLANATION:

The program begins by enabling SVCs (note: once enabled, SVCs remain enabled
until disabled by writing $00 into SVCENB; it is advisable to disable SVCs when not
needed). The BRK instruction together with the first .BYTE 2 pseudo-instruction
comprise the SVC, and Table 7-1 tells us that an SVC 2 is used to display an inline
message. The second .BYTE 2 tells the System what channel to output the message
on. Channel 2 was selected for our example because it is assigned to the console
display by default. Of course, it could be re-assigned to any device or file,
Following the channel is the text of the message, which can consist of up to 254
bytes and is terminated by a $00. The $00 also is the last argument of inline
code. The System will output the message over channel 2 and then return control to
the instruction following the $00 byte; in this case, the RTS which terminates the

program.

Remember that SVCs do not alter any registers except to return values to the
calling program; since SVC 2 does not need to return values, no registers are
altered. This is a big benefit, since it means that you can put inline messages
anywhere you please in your program for debugging purposes without having to worry
about side effects to the registers. Note that SVC 2 does not output any carriage
return automatically; if you want to output control characters, you may include
them explicitly in the message, as illustrated below.

Example Program 2: Display message on a new line.

PROBLEM: Repeat Problem 1, above, but start the message on a new line.

SOLUTION:
SVCENB = $EE
y
GREET LDA $80
STA SVCENB ;ENABLE SVCS
BRK
.BYTE 2 ;SVC 2 = INLINE MESSAGE
.BYTE 2 ;. .ON CHANNEL 2
.BYTE 13 ;13=$0D=ASCII CARRIAGE RETURN
.BYTE 'HELLO THERE.'
.BYTE 0 * ;TERMINATOR
RTS
EXPLANATION:

The only change to this program from Example Program 1 is the addition of the
".BYTE 13" at the start of the message, which produces a carriage return. Any
control characters desired can be embedded in the message in this manner, except
ASCIT NUL (because NUL = $00, the message terminator.).

There are three common programming errors when using SVC 2 to generate
messages:

1. Forgetting to enable SVC's (in which case the program will simply return
to the Monitor with a display of the registers when the first BRK instruction is
encountered);

2. Forgetting the CHANNEL argument (which usually results in an error message
of "ILLEGAL CHANNEL" or "SELECTED CHANNEL IS UNASSIGNED");

3. Forgetting the zero-byte terminator for the message, (which often results
in your program going into "hyperspace" after displaying the message).

Passing Arguments to Supervisor in 6502 Registers

The example programs above passed their arguments to the Supervisor in-line. A
much more common method of parameter- passing is the use of the 6502 registers.
The following example illustrates register parameter passing.

Example Program 3: Character Input-Output.

PROBLEM: Write a program which reads a stream of bytes from channel 5 until a "."
character is encountered, or end-of-file is reached. Display a message indicating
which of these two events occurred. Assume channel 5 has been previously assigned
to a valid file or input device.

SOLUTION:
SVCENB = $EE

13
STRMIN LDA #80
STA SVCENB

NEXTCH LDX #5 ;CHANNEL 5 FOR INPUT STREAM
BRK
.BYTE 3 ;SVC #3 = INPUT CHARACTER FROM CHAN (X)
BCS EOFENC :BRANCHE IF END-OF-FILE ENCOUNTERED
CMP #', ;ELSE EXAMINE CHARACTER INPUT
BNE NEXTCH :IF NOT ".", READ MORE
BRK
.BYTE 2 ;ELSE DISPLAY INLINE MESSAGE
.BYTE 2 :...0ON CHANNEL 2
.BYTE 13,'"." ENCOUNTERED."',0 ;GIVE MESSAGE
RTS
EQOFENC BRK
BYTE 2 ;SVC 2= INLINE MESSAGE
BYTE 2 ;.. .ON CHANNEL 2
.BYTE 13,'E-O-F ENCOUNTERED,',0 ;GIVE MESSAGE
RTS
EXPLANATION:

This program illustrates a number of aspects of SVC usage. The line labelled
NEXTCH is used to load the channel number desired into X. The Supervisor expects
to find the channel number in register X when the SVC is processed, as is detailed
in the individual SVC descriptions. SVC 3 returns the character read in the A
register, and sets the carry flag only if End-of- File was encountered.

End-of-File is an important concept. The End-of-File flag (the carry flag) is set
by the SVC processor only if no more characters can be read from the selected
channel. If the input channel is the console keyboard, this means that CNTRL-Z was
entered (the CNTRL-Z character is not returned in A). If channel 5 was assigned
instead to a file, it simply means that the previous character was the last
character in the file. The programmer should always check for End-of-File when
doing any kind of input operation, so that programs are device-independent. No
error will occur if you attempt to read beyond end-of-file; the result in A is just
not meaningful. It is the Programmer's responsibility to test the carry on every
input operation and take appropriate action if it is set.

In our example, once we have ascertained that E-0-F was not encountered, the
character received from channel 5 is checked to see if ti is a ".". If not,
another character is read. Once one of the two terminal conditions is met, an SVC
2 is used to issue a message to the console (channel 2) indicating which event
occurred.

Passing Arguments in CODOS Pseudo-Registers

Sometimes it is necessary to pass addresses or other 16«.bit information to the
SVC processor., The 8-bit A, X, and Y registers of the 6502 are inadequate for this
purpose, so a set of eight Pseudo Registers (hereafter called P-registers or simply
P-regs) are provided in zero-page, as shown in figure 7-2 . P-regs UO through U6
are each 16 bits wide; U7 is 24 bits wide, and is used for file positioning, as we
shall see later. Note that if SVCs are not enabled, these P-regs are not used for
any purpose whatsoever by the system, and may be freely used as ordinary program
memory by application programs. Values to be passed to the SVC processor are
installed in these P-registers in the usual manner for memory. The SVC processor
expects to find certain addresses or values in specific P-registers, depending on
the SVC. For example, most I-0 functions (except single character I-0) use U5 to
hold the address of an input buffer and U6 to hold the address of an output buffer.
Each SVC description tells what P-registers are used, if any. Certain SVCs return
information to the application program in P-regs. For example, SVC 12 ($0C) does
nct pass any P-regs to the SVC processor, but the system returns U5 and U6 to the
application. The addresses returned are the location of the system input and
output line buffers, respectively.

Example Program 4: Line-Oriented I-0.

Most programs need to deal with input and output of strings or lines of
characters. Several SVCs are provided for support. Applications programs will
make heavy use of the 6502 Indirect,Y addressing mode in these applications. In
general, P-register U5 (for input) or U6 (for output) must be initialized to point
to the start of a buffer containing the current line of interest. The Y register
is used to index the particular character of interest within the line. Normally,
the System Input and Output buffer are the most convenient to use, since an SVC 12
will automatically setup the proper addresses in U5 and U6, but the programmer may
select any location for the buffers. The System buffers are sufficiently large for
lines of up to 80 characters. The following problem illustrates line-processing.

PROBLEM: Write a program to copy line of input text from channel 5 to channel 6
until an End-of-File is encountered, Assume Channel 5 and 6 have been given
appropriate assignments.

(Continued)

9=

SOLUTION:

SVCENB = $EE
us = $BA ;P-REG US
U = $BC ;P-REG U-6

3
CorY56 LDA #80
STA SVCENB ;ENABLE SVCS

BRK
JBYTE 12 ;SVC 12 = QUERRY SYS. BUFFER ADDRESSES
NEXT LDX #5 ;CHANNEL 5 FOR INPUT
BRK
.BYTE 5 ;SVC #5 = INPUT LINE TO BUF. AT (US5)
BCS ECFENC ;BRANCH IF END--OF-FILE ENCOUNTERED
TAY ;ELSE SAVE CHARACTER COUNT IN Y...
TAX ;..-AND X TOO
LOOP LDA (U5),Y ;COPY CONTENT OF INPUT BUFFER...
STA (U6),Y ;...TO OUTPUT BUFFER
DEY
BPL LOOP ;... .UNTIL WHOLE LINE COPIED
TXA ;THEN RECALL LINE LENGTH...
TAY ;...TO Y
BRK
.BYTE 6 ;SVC #6 = OUTPUT LINE AT (U6)
JMP NEXT ;REPEAT FOR NEXT LINE
EQFENC RTS ;END
EXPLANATION:

You may have wondered why byte-oriented I-0 was not used to copy the file
since this would be substantially simpler. One reason is that the line-input SVC
(SVC #5) supports the line editing characters Backspace (DEL or CNTRL-H) and
CNTRL-X (start line over), but the byte-input SVC (SVC #3) does not. Thus using
line input gives more flexibility when the input channel is assigned to the
keyboard (Console). SVC number 3 (byte input) returns control to the application
program immediately when a key is depressed; SVC number 5 does not return until an
entire line is entered, terminated by a carriage return. The edited line is
returned to the user program in the buffer pointed to by U5, and the number of
characters in the line is returned in the 6502 A register. The carriage return is
replaced in the line with a $00 byte, and the character count in A does not include
it.

The Example program starts by enabling SVCs and setting U5 and U6 to the
addresses of the system line buffers, using the SVC 12 function. An SVC 5 is then
used to input the source input line into the buffer addressed by U5, and
End-of-File is tested as before. Note that the SVC 5 function returns the
character count in A and Y set to 0 (therefore ready to index the first character
of .the line}. The character count of the line is transferred to the X register as
a temporary save, and the line is copied (backwards) from the input buffer to the
output buffer. The output buffer is then output over channel 6, Note that the
character count must be passed in the Y register. In the example, this character
count was recalled from X to Y through A.

An alternative to copying the input buffer's contents to the output buffer
would simply be to copy the contents of U5 to Ub. Normally, however, you will want
to use separate input and output buffers since you will be performing other
operations on the line anyway.

Example Program 5: Read Hexadecimal Input Value.

Looking in Table 7-1, you may be surprised to find no direct way to input or
output numeric values. Instead, a combination of two SVCs must be used to perform
this function. This turns out to be a great deal more versatile. A pair of
definitions are needed to get us started:

Decoding is the operation of scanning a string of ASCII characters and
returning the numeric value they represent.

Encoding is the inverse operation; encoding accepts a (binary) value and
returns the string of ASCII characters representing its value.

For example the ASCII string " 010B " when decoded returns the binary value
00C0000100001011 ($010B), assuming that hexadecimal decoding was selected. The
following problem illustrates how to input and decode a hex value.

PROBLEM: Write a subroutine which reads a hexadecimal number from channel 5 and
returns its value in P-register UO.

SOLUTION:
SVCENR = $EE
HEXIN LDA #80
STA SVCENB ;MAKE SURE SVCS ARE ENABLED
BRK
-BYTE 12 ;SVC 12 = GET BUFFER ADDRESSES
LDX #5 ;CHANNEL 5 FOR INPUT
BRK
.BYTE 5 ;SVC 5 = INPUT LINE
BRK
.BYTE 8 ;SVC 8 = DECODE HEX VALUE TO UD
RTS
EXPLANATION:

The enabling of SVCs and selection of the System buffers should be familiar by
now. In practice, these functions would probably be performed only once during
program initialization, and would not be included in this subroutine, thus reducing
the subroutine to a six line routine. The SVC 5 operation inputs a line into the
buffer addressed by P-register U5, as previously seen. The SVC 8 function searches
the buffer (starting with the character indexed by Y, which was 0 in our case since
SVC £ always returns Y=0) for a character string representing a hex value. Note
that any number of leading blanks may preceed the number, and the number may have
any number of characters, so long as the represented value does not exceed $FFFF.
For example, "00D7 ", "™ OD7 " and "D7" will all be acceptable. SVC 8 keeps
scanning until a non-hex character is encountered. Thus, for example, " 2B7,2 "
will return UO = $02B7, because the comma will terminate the scan. When control is
returned to the calling program, the Y register points to the delimiter (the comma
in the example immediately above}, and the A register holds the delimiter
encountered. This is very useful when scanning a line containing multiple values.
In addition, the carry flag is returned to the calling program as a "Valid
Data Enocuntered" flag. Although the example program above did not do so, it is
easy for the application program to check the status of the carry upon completion
of SVC 8; if it is not set, then no valid hex digits were encountered prior to the
delimiter (or end-of-line). Note that the end-of-line delimiter is returned as
$00,

ety

Note: The example programs presented have used the system input and output
line buffers. In practice, during program generation and debugging, it is
advisable to use other buffers because any any interaction with the system will
cause your buffers to be "wiped out" (for instance, any command you enter goes into
the system input buffer). To define your own buffers merely copy the address of
the buffers to U5 and U6, instead of using SVC 12.

SVC_DESCRIPTIONS

SVC #0 ($00)

PURPOSE: Return to CODOS Monitor.
ARGUMENTS: None.

ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC #0 returns control to the CODOS MONITOR. It has two possible advantages
over simply using an RTS to return to the Monitor:

1. It can be executed anywhere, even in a subroutine, provided that SVCs are
enabled;

2. The value of the Program Counter (P) shown by the REG command after
returning will show the address of the SVC 0; using a RTS to return to MONITOR will
not update the P register value shown.

EXAMPLE :
SVCENB £ $EE
LDA $8C
STA SVCENB
BRK
BYTE O ;RETURN TO MONITOR.

SVC #2 ($02)
PURPOSE: Output inline message over channel.

ARGUMENTS:
First Byte after SVC 2 = desired channel number.

Second through Nth byte = desired ASCII message text, terminated by a zero
byte ($00).

DESCRIPTION:

SVC 2 can be used to display a message at any peint in a program (provided
SVCs are enabled). It does not effect any registers. The message may be any
length up to 254 bytes, and can contain any byte including unprintable characters,
except NUL ($00), which is the message terminator. Control will be returned to the
instruction immediately following the O-byte terminator. The channel specified
must be assigned to a valid deviece or file.

EXAMPLE :
SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
CR . 13 :ASCIT CARRIAGE RETURN

LDA #380

STA SVCENB

JSR DOITT

BRK

_BYTE 2 ;SVC #2 = OUTPUT MESSAGE...

BYTE 6ON CHANNEL 6

.BYTE CR,'SUB. DOIT7 DONE, CALLING DOITS.',0

JSR DOITS

This program segment will output this message to channel 6:
SUB. DOIT7 DONE, CALLING DOITS8.
NOTES:
1. The message will always be displayed starting at the present position, If
the message should start on a new line, then the carriage return should be

explicitly included, as in the example above.

2. Be careful to check that you have not forgotten the
CHANNEL NUMBER argument before the message, or the 0-BYTE TERMINATOR after the
message!

SVC #3 ($03)

PURPOSE: Input byte from channel.
ARGUMENTS:
X = desired channel number.
LRGUMENTS RETURNED:
A = byte received from channel,
Flags: CY = 1 means End-of-File was encountered.
DESCRIPTION:

SVC 3 inputs a single byte from a selected channel, which must be assigned to
a valid device or file. The value of the byte returned can be anything, including
control characters ($00 to $FF), if the selected channel is assigned to a file. If
assigned to a normal, character-oriented input device, such as the keyboard, then a
CNTRL-Z (ASCII SUB, 14) will be interpreted as End-of-File. For files, End-of-File
is true only when no more bytes can be read from the file. It is the programmer's
responsibility to check the status of the Carry after every SVC 3 to insure that
End-or~File was not reached. The A register is not meaningfully returned if the
Carry is set.

EXAMPLE:
EVCENB S $EE ;ADDRESS OF SVC-ENABLE FLAG
LDA #80
STA SVCENB ;ENABLE SVCS.
LDX #5 ;SELECT CHANNEL 5
BRK
.BYTE 3 ;SVC #3 = INPUT BYTE ON CHANNEL (X)
BCS EOFHI ;BRANCH IF END-OF-FILE
CMP #1Ct ;WAS INPUT CHARACTER 'C'?

es

This program segment inputs a character from the file or device assigned to channel
5 and checks to see if it was an ASCII "C",

NOTES:

1. The remaining flags (other than CY) are not meaningfully returned; in any
case, the decimal mode flag will not be set,

2. Any value byte can be input including $00, $08, $7F, $FF, etc. No editing
characters are recognized.

¥-3

SVC #4 (#04)
PURPOSE: Output byte over channel.
ARGUMENTS:

X = Channel desired.

A

Byte to be output.
ARGUMENTS RETURNED:

FLAGS: CY = 1 if at End-of-File after output operation.
DESCRIPTION:

SVC 4 outputs the byte in the accumulator over the channel specified in the X
register. The channel must be assigned to a valid file or device. Although there
is no need to do so, application programs may wish to test the Carry flag after SVC
4 to distinguish whether the character written was the last character of the file
or was re-written over some other part of the file. If the channel is assigned to
a device instead of a file, the Carry will always be returned set, since
End-of-File has no meaning in this context.

EXAMPLE :
SVCENB = $EE ;ADDRESS OF SVC ENABLE FLAG FOR SYSTEM
LDA #3$80
STA SVCENB ;ENABLE SVCS

LDA #$07 ;BYTE DESIRED TC OUTPUT

LDX #2 ;CHANNEL 2

BRK

.BYTE & ;SVC 4 = QUTPUT BYTE
JMP THERE

.

This program segment outputs $07 over channel 2. Note that $07 is not the
character "7" but simply a byte with value 7. If channel 2 is assigned to the
console, this will ring the bell (if the console is so equipped), since $07

is the ASCII BEL control character.

NOTES:

1. The value $00 (NUL) can be output using SVC L, as can any other possible
8-bit code.

g4

SVC #5 ($05)

PURPOSE: Input line of text from channel,

ARGUMENTES:

X = Channel number to read from.

U5 = Address of desired input buffer for line.
ARGUMENTS RETURNED:

A = Count of characters in line,

Y = 0.

Flags: CY = 1 if End-of-File encountered.

DESCKIPTION:

SVC 5 inputs a line of text from the file or device assigned to channel 5.
The text will be deposited in a buffer whose address is specified in U5. The line
of text will be terminated by a $00 byte. After the SVC is processed, the Carry
will be set only if no characters could be read from the channel because
End-of-File was encountered. The A register will contain a character count for the
input line. This count does not include the $00 terminator. The Y register is
always returned as 0 to facilitate user processing of the line using Indirect, Y
addressing. If the channel selected is assigned to a device, then End-of-Line is
defined as the first carriage return ($0D) encountered. This carriage return is
converted to the $00 terminator in the buffer, and is not included in the character
count in A.

EXAMPLE :
SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
Us = $BA ; P=REGISTER US LOCATION
LDA #$80
STa SVCENB ;ENABLE SVCS
LDA #$00
STA Us
LDA #$10
STA US+1 ;DEFINE BUFFER ADDRESS AS $1000.
LDX #5 ;CHANNEL 5
BRK
.BYTE 5 ;SVC 5 = INPUT LINE FROM CHAN. (X).

BCS EQFHI ;BRANCH IF END-OF-FILE
STA NCHLN ;ELSE SAVE COUNT OF CHARACTERS IN LINE

‘e

This program segment inputs a line of text from channel 5 and places it in a buffer
starting at address $1000.

NOTES:

1. The system maintains a "Maximum Input Record Length" parameter for text

5-5

input, which has a default value of 80 ($50) characters. If an SVC 5 attempts to
input a line with more than 80 characters, then the system will automatically add
an end-of-line character after 80 characters are read. This is

to prevent 3VC 5 from wiping out all of memory if the channel is inadvertently
assigned to a non-text file which does not contain end-of-line terminators. The
value of the Maximum Record Length parameter can be altered if it is necessary to
read lines of greater than 80 characters. The system buffers are only 80
characters long, however, so the user will have to provide a buffer elsewhere and

not use SVC 12 to define the buffer address.

2. The following editing characters are recognized by SVC 5, These editing
characters are not returned in the line, but instead perform the function
indicated:

BACKSPACE, DEL, or RUBOUT ($08 or $7F): Backspace one character. Will not
backspace beyond beginning-of-buffer.

CNTRL-X or CAN ($18): Delete entire line (start over).
RETURN ($0D): End-of-line.

CNTRL-Z ($1A): End-of-File (applies only if entered from device, not in file;
must follow carriage return).

-6

SVC #b ($06)
PURPOSE: Output line of text on channel.
ARGUMENTS:

X

Channel desired.

Y

Number of characters in line.
Ub = Starting address of line of text.
ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 6 outputs a line of text over a channel which is assigned to a valid file
or device. U6 must contain the address of a buffer containing the text to be sent.
The Y register must hold the number of characters to be sent, not including the
line terminator (which is added by the system).

EXAMPLE :
SVCENB = $EE ;LOCATION OF SVC-ENABLE FLAG
U6 = $BC ;LOCATION OF P-REGISTER U6
LDA #380
STA SVCENB ;ENABLE SVCS
LDA PROD
STA U6 ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256
STA U6+
LDX #6 ;CHANNEL 6
LDY #11 ;11 CHARACTERS IN LINE
BRK
.BYTE 6 1SVC 6 = OUTPUT LINE
PROD .BYTE 'DISK SYSTEM'

This program segment will output "DISK SYSTEM" followed by an end-of-line character
on channel 6,

NOTES:

1. The line to be output cannot exceed 254 characters. If the system cutput
buffer is used, the programmer must not fill the buffer with more than 80
characters. Failure to limit the amount put into the system input buffer will
cause memory above the system buffer to be wiped out.

2. The character count must be passed in Y. This is normally convenient since
if you advance Y after each character is installed in the buffer, it will
automatically contain the character count. Also SVCs which perform encoding of
numeric values automatically return Y as the character count.

SVC #7 ($07)
PURPOSE: Output string of text on channel.
ARGUMENTS:

X

Channel desired.
Y = Number of characters in string.
U6 = Starting address of string of text.
ARGUMENTS RETURNED: None.
DESCRIPTION:
SVC 7 outputs a string of text over a channel which is assigned to a valid

file or device. U6 must contain the address of a buffer containing the text to be
sent. The Y register must hold the number of characters to be sent. EXAMPLE:

SVCENB = $EE ;LOCATION OF SVC-ENABLE FLAG
6 2 $BC ;LOCATION OF P-REGISTER U6
LDA #3880
STA SVCENB ;ENABLE SVCS
LDA PROD
STA Ué ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256
STA Ub+1
LDX #6 sCHANNEL 6
LDY #11 ;11 CHARACTERS IN LINE
BRK
.BYTE 7 ;SVC 7 = OUTPUT STRING
PROD .BYTE 'DISK SYSTEM'

This program segment will output "DISK SYSTEM". NO End-of-line character will be
added by the system.

NOTES:
1. The text to be output cannot exceed 254 characters.

2. The difference between SVC #6 and SVC #7 is that SVC #6 outputs a
carriage return at the end of the string, and SVC #7 does not.

SYSTEM GENERATION

System Generation is the procedure for "customizing®" CODCS to a particular
machine configuration. Once "Customized", the modifications become a permanent
part of the system on disk. When the system is booted-up, the operating system
will be immediately ready to respond to the needs of the user. In particular,
the system needs to know the number of disk drives and location of the input-output
device driver subroutines, especially the Console. Chapter two tells how to get
your system going the first time. This chapter tells how to make the changes
a permanent part of the system.

One of the features of CODOS which greatly facilitates customization is the
booting-up procedure. When CODOS is booted-up, it first loads the operating system
memory image into memory. It then will read a list of CODOS commands from a file
called STARTUP.J. Therefore if you have any special needs for your system, they
can be attended to without operator intervention at this time. For example, if
you need to load your various device-drivers into memory, you can let the STARTUP.J
file do this for you.

Since the STARTUP.J file can contain any list of commands (built-in or user-
defined), you can include SET commands to automatically "patch" the operating
system image in memory after it is loaded. Since CODOS comes up in protected
mode, you will need to UNPROTECT first, though.

You can write your own STARTUP.J file by simply using the TYPE command.
To be on the safe side, we suggest you first TYPE the command file under another
name, and then, when you are sure its correct, DELETE the old STARTUP.J
and RENAME your new file STARTUP.J. This will be illustrated shortly by an
example.

Generally, you can design your STARTUP.J file as you please, but you should
xeep in mind the following considerations:

1. The system initially assigns the Null output device to channel 2, and
assigns channel 1 to STARTUP.J. It reads commands from channel 1 and outputs to
channel 2. Thus no output will appear at the terminal unless channel 2 is
reassigned. Normally, this should be done by executing DATE as the last command
on the STARTUP.J file. DATE will assign channel 2 to the Console, give the
signon message, and prompt for the date.

2. The STARIUP.J file must GET SVCPROC.Z if you plan to use SVCs.

3. You can't do any input or output to a device until its driver subroutines
are loaded.

4. Any error detected by the system causes the system to stop reading the
STARTUP.J file and try to issue an error message. Thereafter it will try to
reac from the Console.

5. In an AIM system, you must GET AIMEXT.Z if you want to use the keyboard
and display on the AIM. AIMEXT contains the device drivers for the AIM plus the
code needed to implement the disk support for the Editor, BASIC and Assembler ROMs,
ete.

Table 9-1 is a list of the addresses of certain important parameters which you
may wish to patch in the operating system. These addresses are subject to change
as new releases are made. You must patch the addresses of the input and output
drivers as a minimum in a KIM system. You must UNPROTECT before using SET to
make the patches. It is strongly suggested you PROTECT before the end of
STARTUP.J.

q9-1

ALM=065 Addr.

TABLE G-1:

EIM-1 Addr.

CODOS V1.0 SYSTEM PARAMETLER ADRDRESSES

Description of contents

$8607-8608
8604-8608

&60D-B60E

8615-863¢

87ES

5866-3869
886A-8801

B66C-

$870-8871

86728873

Ct07-CH08

CH0A-CHOB

CFeh
C8OF

CosA

CE4A
CO4B
C84C

855

{5 Ry b
868

~C869

CB6A-CB63

SUBROUTINE ADDRESS (SER

&
=
3
=
e
o

CONSOLE DISPLAY DRIVER ZUBROUTINE ADDRESE (SER !

ADDRESS OF DRIVER ROUTINZ TO DETERH IF A KEY IS

ON COMSOLE (SFE HOTE 1). FOR ¥TH ONLY, SET CO0C=4C.

DEVICE HAME TABLE AND I-0 DISPATCHERS. (SEE NOTE 2.)
ODE FOR DISK TRACK~TO-TRACK SREEK TIMR AND HEAD UNLOAD

= O

g
TIME (SEE NOTE ’)

CODE FOR DISK HZAD LOAD TIME. (SEE HOTE 3.)
NUMBER OF DISK DRIVES TH SYSTEM (1 OR 2).

WELL

ST IGNORE
MRRORS (NOT

FLAG. THEN SYSTEM
2 RECOMMENDED) .

|
IRHALGVEWAHLT LISK READ

FLAG. IF BIT 7 = THEN PERVMITS &
OVERWRITE AN EXTISITNG FILE ¥

SAVE COMMAND TO
NAME .

ITH THE SAME

FLAG. IF BIT 7 = 1 THEN i MPU WILL

U
SENT TO

BE THE CONSOLE LE-CHARS.)
FLAG, IF BIT 7 = 1 THE® &4 LIWE FEED WILL BE SENT TO THE
CONSOLE QUTPUT EACH TIME OR TS SENT.

ASCIT CHARACTER T USED IN LIEU OF CNTRL=C.

ASCII CHARACTER IN LIEU OF CNTRL-S.

ASCIT i LIEU OF CHTRL-X.

ASCLI N LIEU OF CNTRL-Z.

[CHARACTER TO B2E ¥ LIEU OF ULDERLINE.

CODE FOR NUMBER OF SIMULTANEOUSLY-ACTIVE FILES.(SER
HOTE 5.)

MAXIMUM RECORD LENGTH FOR INPUT LINE.
NUMBER OF BYTES 10 DUMP PER DISPLAY LINME

ADDRESS OF SYSTEM TINPUT LINE BUFFER.
ADDRESS OF SYSTEM OUTPUT LINE RUFFER.

ADDRESS OF LARGE TRANSIENT BUFFER FOR COPYF,

SIZE (KQT FINAL ADDR.) OF LARGE TRANSIENT BUFFE
ADDREES OF USER~-DEFINED INTERRUPT SERVICE ROUTTNE.
ADDRESS OF USER-DEFINED ¥RROR RECOVERY ROUTINE.

94-2-

NOTES:

1. See listing 9-1 for a description of the requirements for Console
input and output routines.

2. BSee listing 9-2 for a description of the memory allocated for the
Device Name table and Dipatcher.

3. The system is shipped with the seek time and head load time sufficiently
long to satisfy any known disk drive. A very substantial performance increase
can be realized by setting the correct seek time and head load time for your
system. The times required for your disk are given in the specifications for
the disk drive provided by the manufacturer. The code to install into memory is
described in the K-1013 Disk Controller Hardware Manual page 37 and 29, for the
"Specify" FDC command.

k., The above addresses are subject to change in future revisions.

5. The CODOS system is set up to allow simultaneous buffered access to a
number of files. The system can be configured to allow 3, 4, 5, or 6
simultaeously-active files. Each simultaneously-active file requires a 256-byte
buffer on an exact page boundary in the on-board System or User RAM on the disk
controller. For a one or two drive system, there is sufficient room in the System
8 k for three such buffers. Up to three additional buffers can be allocated in
User RAM. These buffers are managed automatically by the system., The standard
system comes setup to allow up to the full 6 simultaneous files. Since the need
for 6 simultaneously-active files rarely if ever ocecurs, users may wish to delete
scme or all of the buffer space which is allocated at the top of the User 8K of
ram. Reducing the number of simultaneously-active files to 3 will free up all of
the User-RAM buffers. To redefine the number of buffers available to the system,
set the indicated address to 13 (decimal) times the number of buffers desired,plus
one., For example, to delete all the Buffers in the user area on an AIM, use the
command :

SET 8856 =.13%¥3+1 ;SELECT 3 SIMULTANEOUSLY-ACTIVE FILES.

This value should be set during SYSGEN if desired and not altered. Do not specify
a value for less than 3 or greater than 6 simultaneously-active files. This

value has no effect on the number of files which can be stored on the disk, nor

on the number of I-0 devices or channels.

SAMPLE STARTUP.J FILES

EXAMPLE 1:

An AIM system has one Siemans disk drive with a seek time of 6 ms. The VMT
is to be used for the Console. The user has RAM available from $0000 to $3FFF
in addition to the Visible memory at $6000 and the User RAM at $4000.

To create a new STARTUP.J, the user types:

TYPE C STARTUPNEW.J

This allows him to type his new command-list from the keyboard and save it on the
STARTUPNEW.J file. The commands he enters are:

GET AIMEXT.Z ;LOAD AIM I-0O AND EXTENTIONS
UNPROTECT ;UNPROTECT SYSTEM RAM

SET 880F = 1 ; JUST ONE DRIVE

SET 87E9 = AF 20 ;SET SEEK, UNLOAD, LOAD TIMES

YMT ;LOAD, INITIALIZE VISIBLE MEMORY DRIVERS

GET SVCPROC.Z ;LOAD SVC PROCESSOR

PROTECT ;RESTORE SYSTEM WRITE PROTECT

DATE ;ACTIVATE CONSOLE, ISSUE SIGNON MESSAGE, GET DATE

The user terminates the file with a CNTRL-Z. He then checks the file for accuracy
by entering:

TYPE STARTUPNEW.J

When the user is convinced he has created the file correctly, he makes it the new
STARTUP.J file by entering:

UNLOCK STARTUP.J
DELETE STARTUP.J
RENAME STARTUPNEW.J STARTUP.J

From this point on, if the Bootstrap loader is executed, the system will execute
all the commands the user typed before accepting input from the Console.

LISTING 9-1

ODOS RELEASE 1.0

UMP TABLE
.PAGE 'JUMP TABLE'
* 178 OOEF &= X18600 ;#4% TABLE ORIGIN ###
179 H
120 : JUMP-TABLE TO USER AND SYSTEM DEPENDENCIES
181 :
182 H DEFINITIONS...
183 ;

« 184 ; JCHIN: JUMP TO USER'S CONSOLE-CHARACTER-IN SUBROUTINE. MUST
185 M RETURN ASCII CHARACTER IN A WITH BIT 7 = 0 (UNLESS KEYBOARD
186 H MASK, KBMASK, HAS BEEN ALTERED FROM ITS DEFAULT G VALUE FOR
187 H A SPECIAL KEYBOARD). USER SUBROUTINE CAN DESTROY ANY REGISTERS
188 H BUT MUST RETURN WITH STACK INTACT. THE DRIVER DOES NOT HAVE
189 H TO ECHO THE CHARACTER TO THE DISPLAY. THIS IS DONE BY CODOSSTORE 100%
190 H (UNLESS THE HALF-DUPLEX FLAG, HFDPLX, HAS BEEN CHANGED FROM
191 : ITS DEFAULT OF 0 TO $80).

192 H

193 H JCHOUT: JUMP TO USER'S CONSOLE-CHARACTER-OUTPUT SUBROUTINE.

194 H CHARACTER TO BE QUTPUT IS PASSED IN A REGISTER, WITH BIT 7-=0.

195 H THIS RCUTINE CAN CLOBBER ANY REGISTERS BUT MUST RETURN WITH

196 3 THE STACK INTACT.

197 ;

198 ; JCHIF: JUMP TO USER ROUTINE TO DETERMINE IF A KEY IS DEPRESSED

199 H ON THE CONSOLE KEYBOARD. IF NOT, THE ROUTINE SHOULD SET BIT 7

200 3 OF THE A REGISTER TO 1 (ASSUMING DEFAULT VALUE OF KBMASK) AND

201 3 RETURN. THE REMAINING BITS OF A ARE "DON'T CARE". IF A KEY

202 5 IS DEPRESSED, THEN THE ASCII KEY SHOULD BE RETURNED IN A WITH

203 ; BIT 7 SET TO O (AGAIN, ASSUMING DEFAULT SETTING OF KBMASK).

204 H THIS ROUTINE CAN CLOBBER ANY REGISTERS BUT MUST RETURN WITH

205 ; STACK INTACT. IF YOUR CONSOLE DEVICE CANNOT SUPPORT THIS

206 5 FEATURE, THEN JUST SET BIT 7 OF & TO 1 AND RETURN.

207 :

208 H JCINIT: JUMPS TO USER'S CONSOLE-INITIALIZATION ROUTINE.

209 5 THIS ROUTINE WILL BE CALLED BY THE SYSTEM ON STARTUP PRIOR

210 : TO EXECUTING THE COMMANDS ON THE "STARTUP.J" FILE. THEREFORE,

211 H IF THE DRIVERS FOR THE CONSOLE ARE LOADED BY A COMMAND IN THE

212 - STARTUP.J FILE, IT WILL BOMB THE SYSTEM IF YOU JUMP TO THE

213 . INITIALIZATION ROUTINE VIA JCINIT. FOR THIS SITUATION, INCLUDE

214 3 EXECUTION OF THE INITIALIZATION ROUTINE IN THE "STARTUP,J"

215 H COMMAND INSTEAD. JCINIT DEFAULTS TC A RTS. IT IS NORMALLY

216 H USED WHEN ROM-BASED DRIVERS ARE USED FOR THE CONSOLE WHICH

217 H CAN BE INITIALIZED BEFORE "STARTUP.J" IS READ BY THE SYSTEM.

218 ;

219 H JSINIT: JUMP TQ SYSTEM-DEPENDENT CODE FOR PARTICULAR SYSTEM.

220 3 THIS ROUTINE IS PROVIDED BY MTU FOR EACH SYSTEM (AIM, KIM, ETC)
1 221 F AND IS NOT NORMALLY ALTERED BY THE USER.

222 ;

223 B600 u4ca188 JCOLD: JMP COLD ;JUMP TO COLD START (CANT BE RE-ENTERED!)

224 8603 4ce284A JWARM: JMP COMD ;JUMP TO WARM START ENTRY POINT

225 IF AIM JERERRATM SYSTEM ONLY...

226 B606 4CcB58 JCHIN: JMP AIMKB ;TO CONSOLE CHARACTER-INPUT SUBROUTINE

, 227 8609 4CFCEE JCHOUT: JMP AIMPR sTO CONSOLE CHARACTER-OUTPUT SUBROQUTINE
228 860C UCFg58 JCHIF: JMP AIMKD 3;TO CONSOLE KEY-DEPRESSED TEST SUBROUTINE
229 860F 60 JCINIT: RTS ;TC CONSOLE INITIALIZATION., NOT NORMALLY USED.
230 8610 EA NOP
231 8611 EA NCP

g-5

= LISTING 9-2

JDOS RELEASE 1.0
EVICE DRIVER TABLES

.PAGE 'DEVICE DRIVER TABLES'

235 H

236 H DNT: DEVICE NAME TABLE.

237 i

238 8615 4E DNT: .BYTE 'N" ;"N" = NULL DEVICE DRIVER

239 8616 43 .BYTE 'C' s"C" = CONSOLE DEVICE

240 8617 00 .BYTE 0

241 8618 00 .BYTE O ;RESERVED FOR CUSTOM DEVICES...

242 8619 00 .BYTE 0

243 8614 00 .BYTE 0

244 861B 00 .BYTE 0O

245 861C 00 .BYTE 0

246 3

Zﬁg 3 DDTI: DEVICE DRIVER DISPATCH TABLE FOR INPUT.

2 ;

249 H NOTE 1...FDERTT IS ADDRESS OF ERROR PROCESSING WHEN A PROGRAM
250 H ATTEMPTS TO INPUT OR OUTPUT ON A DEVICE WHICH DOES NOT HAVE THE
251 ; CORRESPONDING DRIVER DEFINED (E.G., INPUT FROM PRINTER),
252 H

253 861D 0095 DDTI: .WORD NULDVR ;NULL DRIVER DEVICE {(DTI=X'80)

254 861F 4A9D .WORD CIN ;CONSOLE INPUT ROUTINE (DTI=$82)
255 8621 1E89 .WORD FDERTT

256 8623 1E89 .WORD FDERTT ;CUSTOM DRIVER ADDRESSES...

257 8625 1E89 .WORD FDERTT

258 8627 1EB9 .WORD FDERTT

259 8629 1E89 .WORD FDERTT

260 862B 1E89 .WORD FDERTT

261 .

222 HE DDTO: DEVICE DRIVER DISPATCH TABLE FOR OUTPUT.

263 H

264 862D 0095 DDTO: .WORD NULDVR ;NULL DRIVER (DTI=X'80)

265 BE2F 5F9D .WORD COUT ;CONSOLE OUTPUT ROUTINE (DTI = $82)
266 8631 1E89 .WORD FDERTT

26T 8633 1E89 .WORD FDERTT ;CUSTOM DEVICE DRIVERS...

268 8635 1E89 .WORD FDERTT

269 8637 1E89 -WORD FDERTT

270 8639 1E89 .WORD FDERTIT

271 863B 1EB9 .WORD FDERTT

272

TO ADD A NEW DEVICE, INSERT THE SINGLE CHARACTER ASCII NAME INTO AN AVAILABLE BYTE
IN TABLE DNT, AND THE ADDRESS OF THE INPUT DRIVER IN THE CORRESPONDING ENTRY IN
DDTI. 1IF THE DEVICE HAS AN OUTPUT CAPABILITY, INSERT THE ADDRESS OF THE OUTPUT
DRIVER ROUTINE IN THE CORRESPONDING ENTRY IN DDTO.

9-¢

CODOS MEMORY MAP - AIM-65

2. All RAM in the user 8 K
block may be freed-up if desired,
providing alternate I-0 drivers 0000
are provided.

1 1
FO00 ! AIM !
! MONITOR ROM !
EQQD ! !
1 '
Do00 AIM ASSEMBLER ROM !
]]
Co00 1 !
! AIM BASIC ROM !
B0O0O 1 !
]]
ACOO !} AIM I-0,RAM !
! K-1013 SYSTEM !
G000 ! 8 X RAM !
! CODOS OPERATING SYSTEM !
8000 | t
1 1
7000 ! K-1008 VISIBLE MEMORY ! 6000
! (IF DESIRED) ! tCODOS POOL BUFFERS -6 1
6000 i ! 5C00 b-— (IF DESIRED) !
’ 1 ! ! AIM EXTENSIONS AND !
5000 ! K-1013 USER L 5800 !SVC PROC. (IF DESIRED) !
! 8 K RAM ! ! t
4000 ! ! 5400 ! VMT VISBLE MEMORY f
! ! ! DRIVER (IF DESIRED) !
3000 ¢ ! 5000 ! !
! K-1016 16 K RAM !
2000 1 (OR EQUIVALENT) !
1 ! 00FF ! !
1000 ¢ ! ! UNUSED !
! ! 00EF 1 !
0020 ¢ L OOEE ! CODOS GLOBAL RAM !
00ED ! !
1 !
! CODOS SCRATCH RAM !
NOTES: 00C1 ! !
) 00CO ¢ USER PSEUDO-REGISTERS !
1. All zero-page RAM except) ! {IF DESIRED) !
$ED and $EE is scrateh for CODOS 00BO ! !
and may be freely used by appli- 00AF ! !
cation programs. Zero-page con- ! !
flicting RAM with AIM BASIC is ! !
swapped out automatically upon ! :
entry to CODOS using the F3 key. ! UNUSED '
[] 1
, '
1 1
! 1

3. In standard form, CODOS uses $1000 to $2FFF for the large scratch buffer
for the file copy Utility program; may be altered if desired.

4, Bootstrap loader uses $0000 through $00EE for scratch RAM during the
booting-up process.

q-7

Address

MEMORY MAP FOR CODOS (AIM)

Usage

$9FES-YFFF
9FQ0-YFET
8600-9EFF

8000-85FF
SDO0-5FFF

5CAF-5CFF
5C5E-5CAE
5A70-5C5D

5412-546F
5890-5411

5000-58EF

1000-2FFF

0CEF
OQEE
OCED

00C1-00EC

00BO-00CO

009 4~00AF

NOTES:

Disk controller I-0. lUrite protect port at SFES.
Bootstrap PROM.
CODO3 Operating system code and tables in write-protected RAM.

Pool disk buffers, Tables, and Directory buffers for CODOS in write-
protected RAM.

Default location for pool disk buffers 4, 5, 6. If pool buffers 4-6
are disabled, then unused.

Default location for system Output Line Buffer. Otherwise unused.
Default location for system Input Line Buffer. Otherwise unused.
SVC processor, if desired. Otherwise unused.

Zero page swap area for AIM Extension package, if desired. Otherwise
unused.

AIM I-0 drivers and Extended ATM support package. If not desired, then
unused.

Optional VMT (Visible Memory Terminal) driver package, if desired.

Includes text and high-resolution vector drawing capability, and AIM
BASIC USR Function interface. If not enabled, then unused.

Default location of Large Buffer used by file-copying and FORMAT
Utility programs. Otherwise, unused.

Used for Print-flag by optional VMT package. Otherwise, unused.

SVC Erable flag for CODOS.

CODOS global zero-page RAM. Do not use.

Scrateh zero-page used by CODOS. Can be freely used by applications
programs for scratch RAM., Conflicting AIM BASIC page zero RAM is
automatically swapped and preserved by CODOS.

User Pseudo-Registers, if desired. Otherwise, unused.

Scrateh zero-page used by optional VMT packsage. Automatically swapped

in/out, preserves AIM BASIC conflicting RAM. If not enabled, then
unused.

1. By appropriate System Generation, it is possible to free all User RAM
($4000-5FFF), if desired.

2. Effectively, CODOS uses only location ED and EE in zero page for storage of
permanent information. All other page 0 is essentially available.

9-8

LE CONSOLE KEYBOARD DRIVER RGUTH-}E@/

STITLE THCH, ' KIM KEYBOARD DRVR!

3 £Itf ASCII KEYBOARD DRIVER FOR DATA TC PORT 4 BITS 0 TO Ty
NEGATIVE GOING STROBE TO BIT 7.

X'1700 ;KIM PORT A DATA
1701 ;EKIM PORT A DATA DIRECTION

A
3
=
=

]
=
©
S

o

;%ﬁ%%%cggxﬁﬁ

OW DT W W R -
-
=
)
@
g
i
lw)

—

:
1 1780 A%00 INCH: LDA
onn 3
(8

12 1782 &p0117 STA ;INPUTS PLEASE

13 1785 ADOC1T INCH1: LDA

14 1788 30FB BMT INCIIT sWAIT FOR STROBE

15 1784 (€961 CMP #97 ;LOWER CASE A

16 178C 4007 BCO INCEY sBRANCH IF HOT L.C.

17 1782 CYTB Chi #123 yL.CLUZ+1

16 1790 BOU3 BCS INCHA

19 1792 38 SEC

20 1793 kY20 SBC #X120 ;FOLD LOWER TO UPPER CASE ALPHA
21 1795 2C0017 INCHY: BIT PAD

22 1795 10FB BPL INeHk JWAIT FOR END-OF-STROBE
23 1794 60 RTS

24 :

25 000U END

O wHROR LINLS

9=

APPENDIX B: ERROR MESSAGES

CODOS
Error NO. Meaning

1 System crash: Floppy disk controller chip command phase error.
2 System crash: Floppy disk controller chip result phase error.
3 Missing or illegal disk drive number specified.

Y Unformatted disk or hardware drive fault.

5 Selected drive (or drive needed for System overlay) is not ready.
6 Disk drive seek error.

7 Hardware disk read/write error.

8 Irrecoverable disk read/write error.

9 Disk is write-protected.

A Missing or illegal channel number specified.

B Specified channel is not assigned.

[Disk is hardware write-protected, or disk formatting error.
b Can't FORMAT an open drive.

E Illegal track specified on disk.

F CODOS-reserved memory violation.

10 System crash: Bad file table file ordinal.

11 System crash: bad entry in block assignment table.

12 Disk is full; all blocks are allocated.

13 No room for new file; disk directory is full.

14 System crash: directory entry /file table mismatch.

15 Specified file was not found on selected drive.

16 System crash: defective directory entry.

17 File table is full (free some channels assigned to files).
18 Specified file does not exist.

19 Illegal or missing file name.

1A Numeric overflow (greater than $FFFF).

1B From argument is greater than To argument.

ic Illegal sector specified on disk.

1D Previous disk was not closed (or Reset hit).

1E Guarded file violation.

1F File is not a loadable-format file (not made by SAVE).

20 Illegal or missing character in command.
21 Value evaluates to greater than 255 ($FF) or less than 0.
22 Missing or illegal device or file name.

23 Selected disk drive (or drive needed for system overlay) is not open.
24 From address argument missing or illegal.

25 To address argument missing or illegal.

26 Entry point address argument missing or illegal.

27 Can't assign a new file to write-protected disk.

28 Command not found.

29 Value argument missing or illegal.

24 Missing or illegal string delimiter.

2B Memory verification failure during SET or FILL.
2C . Missing or illegal register name.
2D Interrupt through undefined User-Interrupt Vector.

2E Illegal or wnimplemented SVC.
2F Insufficient free channels.

30 Illegal or missing disk Volume Serial Number (VSN)

31 Illegal transfer of control into CODOS.

32 System crash: illegal system overlay number.

33 System crash: overlay did not load, or no system on disk in drive O.
34 File name specified for SAVE already exists.

35 Missing or illegal Destination address argument.
36 Tried to input on output-only device, or visa-versa.

8-/

